ABSTRACT: The Rh(III)-catalyzed selective bromination and iodination of electron-rich heterocycles is reported. Kinetic investigations show that Rh plays a dual role in the bromination, catalyzing the directed halogenation and preventing the inherent halogenation of these substrates. As a result, this method gives highly selective access to valuable halogenated heterocycles with regiochemistry complementary to those obtained using uncatalyzed approaches, which rely on the inherent reactivity of these classes of substrates. Furans, thiophenes, benzothiophenes, pyrazoles, quinolones, and chromones can be applied.

Aromatic heterocycles are undoubtedly one of the most important structural motifs in chemical synthesis.1 Halogenated compounds comprise a major class of building blocks for the synthesis of heterocycles, due to the versatility of the C−X group in a large variety of functionalization reactions,2 especially cross-couplings.3 While most heterocycles can be selectively halogenated at a well-defined position due to their inherent selectivity resulting from the electronic properties of the compound, direct halogenation to yield other isomers is often challenging and requires harsh reaction conditions and/or many synthetic steps. One prominent strategy is directed ortho metalation (DoM), followed by a halogen quench.4

Directed transition-metal-catalyzed C−H halogenation has emerged as a powerful tool for the complementary synthesis of halogenated building blocks.5 Within the past few years, a plethora of reports on the halogenation of benzene derivatives have been published, highlighting the importance of this transformation. The most often used metal for this transformation is palladium,6 however, other metals have also been applied.7 To the best of our knowledge, only the group of Yu et al. has reported a transition-metal-catalyzed C−H halogenation of aromatic heterocycles using a Pd catalyst and molecular I2 as the oxidant.6b In that excellent report, pyrazoles, oxazoles, thiazoles, and pyridines could be used as suitable substrates. However, no directed halogenation exists for the synthesis of electron-rich heterocycles like furans and thiophenes that can override the inherent reactivity of these substrates. As a result, this method gives highly selective access to valuable halogenated heterocycles with regiochemistry complementary to those obtained using uncatalyzed approaches, which rely on the inherent reactivity of these classes of substrates. Furans, thiophenes, benzothiophenes, pyrazoles, quinolones, and chromones can be applied.

With the optimized conditions in hand, we examined the scope of different heterocycles with different substitution patterns, bearing the directing group (DG) in the 2-position (Table 1). For all substrates, a control reaction omitting the catalyst was performed (see SI for the results). With N,N-diethylamide, 2-Br could be isolated in a very good yield of 88%; iodination with N-iodosuccinimide (NIS) gave a comparable yield of 87% (2-I).12 In addition, a larger scale reaction (10 mmol scale) could be successfully run. With electron-withdrawing groups attached to the desired product in a yield of 84% (see Supporting Information (SI) for further information), although in a mixture with 8% of the dibrominated product. Screening of different electrophilic brominating agents showed that the yield could be increased to an excellent 95% with N-bromophthalimide (NBP) instead of NBS, while other reagents proved to be less effective. Remarkably, unlike most other Rh(III)-catalyzed C−H activations, no carboxylic acid or carboxylate was required to obtain high yields.11 Notably, the reaction works efficiently under air, and no precaution needs to be taken to exclude moisture from the glassware.

Gratifyingly, the more useful N,N-diethylamide 2 is also effective. Comparative reactions with 2 strikingly revealed that, in both reactions, excellent selectivity for the 3- or the 5-position was observed, and no other isomers were detected by GC-MS analysis (Scheme 1).

Scheme 1. Regioselectivity in the Rh-Catalyzed Halogenation Compared to the Standard Reactivity

Conditions: 0.4 mmol scale in 0.2 M 1,2-DCE, 1 equiv of 1, and 1 equiv of NBP; 2 mol% [RhCp*([MeCN])2](SbF6)2 for the catalyzed reaction; isolated yields are given.

Received: January 14, 2015
Published: January 15, 2015
the furan, the reactivity decreased significantly, and higher temperatures were needed to provide 3-Br in an acceptable yield of 57%. Methyl and phenyl substituents were readily tolerated, and the yield of the products was 88% for 5-Br and 95% for 4-Br. Product 5-Br is a good example for the efficiency of the Rh(III)-catalyzed reaction, suppressing two different side reactions which were found in the control reaction without any catalyst: bromination in the 4-position occurred in 14% isolated yield, resulting most likely from an electrophilic pathway, and bromination of the methyl group occurred in 69% isolated yield, resulting from a radical reaction under the uncatalyzed conditions. Switching from furan to thiophene derivatives gave the same reactivity, and excellent yields could be obtained. Several interesting functional groups (methoxy, aldehyde, nitro, trifluoromethyl, fluoro) were also well tolerated. However, the very electron-rich pyrrole motif could not be selectively halogenated under our reaction conditions. In this case, the inherent reactivity predominated, and the main product was the 5-halogenated derivative.

Unfortunately, N,N-diethylfuram-3-carboxamide (14) was not a suitable substrate for our catalytic system (Table 2). With and without the Rh catalyst, a complex mixture of the 2-brominated and 2,5-dibrominated products was observed.

In comparison to furans with the amide moiety in the 3-position, thiophenes like 15 and 16 could be iodinated in moderate to excellent yields. Benzothiophene 17 also yielded the desired product 17-Br in a very good yield of 90%. Applying the pyrazole 18 to the iodination conditions led to a 7:1 mixture of both possible regioisomers in a combined yield of 80%.

Other important benzannulated heterocycles were also tested under our reaction conditions (Table 3). Chromones 19 and 20 and the amide derivative of oxolinic acid 21, an antibiotic of the quinolone class, underwent iodination in good yields. Interestingly, in the quinolone examples, iodination occurred at the 5-position rather than at the 2-position. This is most likely due to the steric demand of the nitrogen substituent, blocking the 2-position, and activation of the ring ketone group as a DG through the nitrogen, which could be viewed as a vinylogous amide. In addition to amides, ester (the free acid is a precursor of Ciprofloxacin, another quinolone-type antibiotic) also underwent iodination, but in a lower yield of 69%. To prove that the DG is the vinylogous amide and the amide or ester function is not important, the quinolone core 23 was subjected to the reaction conditions. First we observed iodination of the 3-position, which is uncatalyzed due to the high reactivity of the enamine. Applying this mono-iodinated species to our reaction conditions led to a selective metal-catalyzed iodination of the 5-position.

Due to the complementary reactivity of the metal-catalyzed and uncatalyzed halogenation, we decided to see if these methods could be combined in a one-pot approach to synthesize highly functionalized heterocyclic building blocks (Scheme 2).
To better understand the origin of the high levels of regioselectivity in the Rh-catalyzed bromination of furan and thiophene, we conducted a kinetic study of the inherent bromination of the 3-bromo-substituted compound 2-Br, both in the absence and in the presence of the Rh catalyst (Figure 2).

![Figure 2. Inherent reactivity in the absence and in the presence of \([\text{RhCp}^+\{\text{MeCN}\}]_3\{\text{SbF}_6\}_2\). Yield determined by GC analysis.](Image 86x522 to 275x681)

The inherent, uncatalyzed bromination at the 5-position in the absence of Rh showed an induction period, suggesting that the substrate does not react directly with NBP. (The same effect was observed with thiophene 6-I, see SI.) We propose that the reaction partner is in fact Br₂, and that an initial reaction between NBP and HBr (or Br⁻), formed under the reaction conditions, generates the active halogenating reagent. In the presence of the Rh catalyst, the rate of the inherent bromination at the 5-position is dramatically decreased. Presumably, the Rh complex acts as a bromide acceptor, retarding the formation of Br₂. This hypothesis is supported by the fact that AgSbF₆ also suppresses the uncatalyzed reaction, while the addition of HBr accelerates the reaction (see SI for further kinetic studies). We were also able to isolate the \([\text{RhCp}^+\{\text{Br}_2\}]_2\) complex upon heating the cationic catalyst, \([\text{RhCp}^+\{\text{MeCN}\}]_3\{\text{SbF}_6\}_2\), with HBr. These results suggest that, for substrates with free sites at both the 3- and the 5-positions available for halogenation, the Rh catalyst plays two roles in ensuring high levels of regioselectivity. On one hand, Rh catalyzes the directed halogenation at the 3-position with NBP as reaction partner is in fact Br₂, and that an initial reaction between NBP and HBr (or Br⁻), formed under the reaction conditions, generates the active halogenating reagent. In the presence of the Rh catalyst, the rate of the inherent bromination at the 5-position is dramatically decreased. Presumably, the Rh complex acts as a bromide acceptor, retarding the formation of Br₂. This hypothesis is supported by the fact that AgSbF₆ also suppresses the uncatalyzed reaction, while the addition of HBr accelerates the reaction (see SI for further kinetic studies). We were also able to isolate the \([\text{RhCp}^+\{\text{Br}_2\}]_2\) complex upon heating the cationic catalyst, \([\text{RhCp}^+\{\text{MeCN}\}]_3\{\text{SbF}_6\}_2\), with HBr. These results suggest that, for substrates with free sites at both the 3- and the 5-positions available for halogenation, the Rh catalyst plays two roles in ensuring high levels of regioselectivity. On one hand, Rh catalyzes the directed halogenation at the 3-position with NBP as the bromine source while, on the other hand, suppressing the inherent reaction at the 5-position by retarding the formation of Br₂.

We thought that the complexation of bromide by the Rh catalyst is also the major decomposition pathway of the active catalyst in our standard reaction. To prevent this pathway, we performed the bromination of 1 in the presence of 5 mol% AgSbF₆ as an additive to remove the bromide. Indeed, it was possible to perform the reaction with only 0.1 mol% catalyst, resulting in an excellent turnover number of 780 (Scheme 3).

To gain some mechanistic insight into this transformation, different experiments were performed (Scheme 4). To elucidate the nature of the C–H activation step, we conducted a crossover experiment between deuterium-enriched disopropylamide 1-d₁, and diethylamide 2. In the presence of 2 mol% of the Rh catalyst and no other additives, significant deuterium scrambling could be observed, indicating that no external base (i.e., the phthalimide) is needed for the C–H activation step. A similar result was observed when MeOD was used as an external deuterium source (see SI).

A significant kinetic isotope effect (KIE) was observed when the rate constants of the reaction of 1 and 1-d₁ were measured, indicating that the C–H activation step is turnover-limiting. A competition experiment between thiophene substrates 8 and 12 showed that electron-poor substrates react significantly slower. While the absence of any carboxylate base and the preference for electron-rich substrates speak in favor of an electrophilic aromatic substitution pathway, the large KIE argues against this pathway. A concerted metalation–deprotonation pathway may take place, with the amide moiety of the substrate acting as a base. However, at this point, neither of these two mechanisms can be ruled out.

Following the C–H activation event, two alternative scenarios seem plausible: (i) oxidation of the Rh(III) intermediate with the halogenating agent to generate a Rh(V) species, which releases the desired product after reductive elimination, or (ii) direct nucleophilic attack of the rhodacycle at the halogenating agent to deliver the desired product.

In conclusion, a new method for the effective bromination and iodination of different classes of electron-rich heterocyclic compounds has been described. Key to success is a Rh(III) catalyst that not only catalyzes the desired transformation but also suppresses the inherent halogenation at the 5-position. It is likely that a similar behavior is operative in other catalytic transformations. The benzannulated six-membered heterocycles chromones and quinolones were also successfully iodinated.
Supported by the DFG (IRTG Münster-Nagoya & IRTG Münster-Toronto), the European Research Council under the European Community’s Seventh Framework Program (FP7 2007-2013)/ERC Grant agreement no 25936, “Sustainable Chemical Systems (SusChemSys)” co-financed by the European Regional Development Fund (ERDF) and the state of North Rhine-Westphalia, Germany, under the Operational Programme “Regional Competitiveness and Employment” 2007-2013) and the Alfried Krupp von Bohlen and Halbach Foundation (Alfried Krupp Prize for Young University Teachers) is gratefully acknowledged.

REFERENCES