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Abstract

Great progress has been made in addressing global undernutrition over the
past several decades, in part because of large increases in food production
from agricultural expansion and intensification. Food systems, however, face
continued increases in demand and growing environmental pressures. Most
prominently, human-caused climate change will influence the quality and
quantity of food we produce and our ability to distribute it equitably. Our
capacity to ensure food security and nutritional adequacy in the face of rapidly
changing biophysical conditions will be a major determinant of the next cen-
tury’s global burden of disease. In this article, we review the main pathways by
which climate change may affect our food production systems—agriculture,
fisheries, and livestock—as well as the socioeconomic forces that may influ-
ence equitable distribution.
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1. INTRODUCTION

One of the great public health achievements in modern history is the steep acceleration in global
food production over the past six decades. Despite historic growth in global food demand, rates
of undernutrition have fallen. This achievement was driven in part by technological innovations,
including the development of higher-yielding grain varieties, production of synthetic fertilizers
and pesticides, and mechanization of agricultural labor. It has also required the appropriation of
large shares of Earth’s natural resources. Roughly 40% of Earth’s ice-free land surface is used as
cropland and pasture (55). Irrigation uses 66% (about 2,000 km3) of annual water withdrawals and
is the single largest human use of water (23).

Despite our enormous successes in increasing global food availability (a key requirement
for food and nutrition security), the global burden of undernutrition and micronutrient defi-
ciencies remains staggering. Researchers estimate that two billion people are deficient in one
or more micronutrients, 160 million children under the age of 5 years are too short for their
age, 50 million children under the age of five years are dangerously thin for their height, and
790 million people have insufficient daily dietary energy intake (71). The latest analysis available
suggests that undernutrition is associated with three million child deaths annually, which is almost
half of child deaths globally (19).

Looking toward the future, global food demand is expected to continue rising at the histori-
cally steep pace that began in the 1950s (Figure 1). But unlike in the 1950s, we are now facing
growing constraints in our capacity to appropriate new land, new water, or new fisheries to meet
these demands. Added to this challenge is the fact that human activity is rapidly changing the
environmental conditions within which global food production operates (146). One of the great
humanitarian challenges of the twenty-first century is to keep up with increasing human nutri-
tional needs in this context of natural resource constraints and our rapid transformation of Earth’s
natural systems, including the climate system.

Climate change is associated with increasing temperatures and more extreme rainfall; it alters
relationships among crops, pests, pathogens, and weeds; and it exacerbates several trends including
declines in pollinating insects, increasing water scarcity, increasing ground-level ozone concen-
trations, and fishery declines. On the other side, there are yield benefits to higher concentrations
of atmospheric carbon dioxide (CO2) and potential productivity gains at higher latitudes. Some
overall estimates of the potential impacts of climate change on nutrition and mortality outcomes
exist (111, 141) but necessarily entail substantial uncertainty, largely because of limitations in our
current understanding of the complex and interacting pathways by which climate change can affect
food and nutrition security and health. Here we review the mechanisms and the estimates for how
climate change may influence food production and distribution, as well as associated consequences
for human food and nutrition security. Figure 2 provides a schematic for this review. We do not
attempt a comprehensive review of all literature for each mechanism, but rather focus on the most
recent and relevant literature and on studies that synthesize the topics at hand.

2. AGRICULTURE

The history of agriculture has involved repeatedly overcoming constraints and achieving greater
food production through increasing the amount of cultivated land and intensifying cultivation by
adopting new agricultural technologies (48, 120, 143). Yet the quantity and nutritional quality
of agricultural production ultimately depend on a dynamic balance of appropriate biophysical
resources, including soil quality, water availability, sunlight, CO2, temperature suitability, and, in
some cases, pollinator abundance. Production diminishes under certain weather extremes as well
as from pests, pathogens, and air pollution (e.g., tropospheric ozone). In some places, production
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Figure 1
Since the start of the Green Revolution, total dietary energy produced by the global food system has been
increasing rapidly; demand is projected to continue rising at historic levels. At the same time, the global
climate on which our food system relies has been changing rapidly and is projected to continue on its current
course unless significant interventions are made. Panel a: Global dietary energy supply. Historical dietary
energy supply estimates were calculated by multiplying daily per capita calorie supplies from Food and
Agriculture (FAO) food balance sheets (50) by global population estimates from the United Nations (UN)
Population Division (144). Projections of future energy supplies were estimated by multiplying estimates of
global daily per capita supplies through 2050 from Alexandratos (3) by median population projections from
the UN (144). Panel b: Atmospheric CO2 concentration. Historical data are taken from annually averaged
Mauna Loa observations (43). Future projections are taken from representative concentration pathway
(RCP) climate scenarios used in the most recent Intergovernmental Panel on Climate Change (IPCC) report
(123). Panel c: Global average temperature change. Historical data are annually and globally averaged land
and ocean temperature anomalies relative to average temperature of 1900–2000 (115). Projected temperature
estimates represent the median of four RCP model ensembles standardized to the same 1900–2000 standard
level, as well as a 95% confidence interval (CI) for 2050, as reported by the IPCC (73) and aggregated
by the KNMI Climate Explorer (https://climexp.knmi.nl). Panel d: Global population. Historical and
future estimates (with a 95% CI for forecasted data) for global population are estimated by the UN (144).

is heavily dependent on physical agricultural labor. Climate change is expected to influence each
of these dimensions of agricultural production, but often in ways that remain poorly characterized.

2.1. Temperature, Water, and CO2

Global land temperatures in the past decade, 2006–2015, were 1.0◦C (1.8◦F) warmer than the
twentieth-century average (115). Under a moderate greenhouse gas emissions scenario, referred
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• Altered primary 
production, poleward 
shifts of species, smaller 
mean fish size [3.1]

• Coral reef degradation and 
shellfish declines [3.2]

• Altered fish nutrient 
content [3.3]

• Terrestrial temperature increase
• Rainfall variability
• Extreme weather events
• Increased atmospheric CO2, ozone levels 

• Animal heat stress [4]
• Changes in forage 

species composition 
and productivity [4]

• Abiotic effects on crop yield
  [2.1, 2.2]

• Greater pests, pathogens, weed 
pressure [2.3]

• Pollinator declines [2.4]
• Lower human labor capacity [2.5]
• Poorer crop nutrient content [2.6]
• Greater postharvest losses [5.4]

Greenhouse gas emissions

• Ocean temperature
increase

• Ocean HCO3
– increase

(acidification)

• Higher frequency of 
conflict [5.1]

• Lower GDP growth 
[5.3]

• Price increases [5.2]
• Price volatility [5.5]

Altered crop yields and
reduced nutrient content [2]

Lower purchasing 
power of nutritionally 
vulnerable populations [5]

Increase in diarrheal diseases
and enteric infections

Altered livestock
productivity [4]

Altered fish catch and
nutrient content [3]

Altered global nutrient supply

Altered nutritional status

Human activity

Proximate 
biological 
consequences

Climate and 
atmospheric 
shifts

Impact on 
human 
socioeconomic 
systems

Nutritional 
and health 
consequences

Increased exposure to
enteric pathogens [5.4]

Pathways for impacts of climate change on food systems, food security, and undernutrition

Figure 2
Anthropogenic greenhouse gas emissions are likely to impact human nutritional status through a cascading set of biophysical and
socioeconomic changes. Details for the mechanisms and impacts of each cause may be found in the text sections provided in brackets.

to as representative concentration pathway (RCP) 4.5, atmospheric CO2 concentrations would
continue their rise from a 280-ppm preindustrial baseline, beyond the present 400-ppm levels,
and on to values of 540 ppm by 2100 (123). Climate simulations indicate a further land warming
of 1.9–4.0◦C (3.4–7.2◦F) [90% confidence interval (CI)] (37, 75, 115). Under the higher emission
scenario, known as RCP8.5, CO2 concentrations would reach 940 ppm by 2100 and result in land
warming of 4.0–6.8◦C (7.2–12.2◦F) (75, 115). Even a moderate emissions scenario is expected
to result in average summer temperatures that exceed the most extreme temperatures currently
experienced in many areas of the world (11).

The availability of water resources for agriculture will be influenced by climate change in a
multitude of ways, including shifting precipitation patterns, loss of glaciers and earlier seasonal
snow melt, and intrusion of saltwater into coastal aquifers (78). Climate model projections gen-
erally indicate less precipitation in currently arid and semiarid regions and greater precipitation
in the polar latitudes (37). Rainfall events are expected to become more intense, likely increasing
runoff and flooding (37).
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Crop yields are highly sensitive to changes in temperature and water availability (89). Optimal
growing temperatures vary depending on cultivars and other environmental variables (130), but
air temperatures above approximately 30◦C (86◦F) are generally associated with reduced yields for
rain-fed crops (29, 132). High temperatures can depress yields by accelerating crop development
(5, 28) and can induce direct damage of plant cells (130). Exposure to damaging temperatures will
generally increase as global temperatures rise (60), although these trends will vary regionally and
can be locally tempered by irrigation or other changes in agricultural practices (20, 40, 106).

Crop water stress is also a major driver of yield loss (103, 137) and is generally coupled with
high temperatures both because low soil moisture leads to a decrease in evaporative cooling from
the landscape (104) and because high temperatures increase crop water loss (90).

Although the rising concentration of atmospheric CO2 is the primary driver of harmful an-
thropogenic climate change, it can also improve crop performance by increasing rates of pho-
tosynthesis and water use efficiency (93). Crops that operate with a C3 photosynthetic pathway,
including wheat, rice, and soybean, experience greater stimulation of growth from CO2 increases
than do crops with a C4 photosynthetic pathway, such as maize, sorghum, and sugarcane (83).

There remains substantial uncertainty about the interacting consequences of changing temper-
ature, precipitation, and CO2 concentrations, particularly in the context of largely management-
driven yield increases that are still occurring across the majority of croplands (61, 85, 125). Climatic
shifts may provide either a drag or a boost to ongoing yield trends. Existing estimates suggest that
climate trends since 1980 have reduced global production by approximately 5% for maize and
wheat relative to a counterfactual scenario with no climate shift, whereas net global production
of soybeans and rice has remained unaffected by climate change, though there are regional gains
and losses (91).

As we consider future scenarios of climate change, estimates generally indicate that warming
will depress yields for maize and wheat, with stronger yield losses expected in tropical regions,
whereas rice yields appear to be less sensitive to anticipated changes (31, 127). Crop growth
models that incorporate the effects of CO2 concentrations along with effects of temperature,
water availability, and nitrogen limitation indicate 25% average yield losses for low-latitude maize
and 15% losses for low-latitude wheat in a scenario where global temperatures warm by 4◦C
(7.2◦F) by 2100 (127). Individual model results vary considerably, however; some models predict
roughly twice the losses and others even suggest small gains in yield at low latitudes. Furthermore,
these models do not explicitly represent adaptation or attempt to represent phenomena such as
changes in ground-level ozone, pests, pollinators, or agricultural labor.

Farmer adaptation to new climate conditions holds promise for mitigating losses in agricultural
production, although the magnitude of adaptation potential remains a topic of ongoing debate
(27, 31, 42, 87, 100). Within a particular crop-management system, farmers may alter planting
and harvest dates, change crop varieties, or adjust irrigation practices. A recent meta-analysis
quantifying the benefits of such changes found that simulated adaptation led to crop yields that
were 7–15% higher than yields in the absence of adaptation. Gains from adaptation tended to be
largest in temperate areas, whereas the mitigation opportunity from adaptation was minimal for
tropical maize and wheat production (31). Farmers may also adapt to new climate conditions by
switching to entirely different crops or reallocating land from crop production to grazing (98).

2.2. Ground-Level Ozone

Ground-level ozone is derived primarily from chemical reactions between anthropogenic emis-
sions (2). Ozone formation increases with rising temperature, particularly above 32◦C (90◦F) (14).
In addition to being a human cardiorespiratory toxin, ground-level ozone is also a plant toxin,
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hindering crop photosynthesis and growth, as well as reducing grain weight and yields (4, 52, 56).
Open-air experiments indicate that the ozone concentrations of 54–75 ppb found currently in
polluted regions decrease yields by 8–25% in rice, soybean, and wheat (101, 136, 148). Globally,
current levels of ozone pollution are estimated to have suppressed maize, wheat, and soybean
yields by 6–9% (6). Although increased government regulation should lower ozone levels over the
coming decades in developed countries, many developing countries, especially in Africa and Asia,
can anticipate increased ozone levels owing to greater emissions and warming (124).

2.3. Pests

Insects, pathogens, fungi, and weeds are estimated to be responsible for reducing the production
of major crops by roughly 25–40% (54), although systematic global data are limited. Annual losses
due to fungal infestation alone are estimated to reduce global dietary energy availability by 8.5%
(53). Warming temperatures increase winter survival of insect pests and rates of herbivory (7).
Changing temperatures also drive shifts in the latitudinal range of crop pests and pathogens.
Among 612 species of pests and pathogens, investigators observed an average poleward shift of
2.7 km per year since 1960 (13). Crops often lack defenses against nonnative pests and pathogens
(12), requiring ongoing breeding and management efforts to face new threats. Spatial mismatches
between pests and natural predators can also undermine biological control systems (134).

Extreme weather events can destabilize agricultural systems, compromising crop defenses and
creating niches that allow pests and weeds to establish themselves (128); however, weather extremes
may also pose threats to pests and invasive plants, sometimes even boosting the competitive
ability of crops (147). In addition to the effects of a changing climate, agronomists anticipate that
increasing CO2 concentrations will lead to complex changes in the composition of weeds and the
strength of plant defenses against pests and pathogens (33, 152). Moreover, herbicides are less
effective at controlling weed biomass increases induced by elevated CO2 concentrations (149, 150).

2.4. Pollinators

Climate change will also affect food production of flowering species by reducing the abundance
of pollinating insects and shifting their regional distributions (1, 64, 72, 97). Warming affects
the timing of flowering and will generally cause plant communities to migrate poleward (117),
and these changes may result in mismatches between mutualistic plant–pollinator pairs, thereby
disrupting interactions and ecosystem functionality. Furthermore, reduced overlap between the
timing of plant flowering and pollinator emergence may reduce the breadth of diet for pollinators,
resulting in decreased pollinator abundance and increased extinctions of both plants and pollina-
tors. Finally, increasing CO2 concentrations are also changing the nutritional value of important
forage for pollinator species, with undetermined consequences for pollinator health. A recent
study showed that, since 1842, there has been a one-third reduction in the protein content of
goldenrod pollen, a late-blooming plant that plays an important nutritional role for overwinter-
ing pollinators (151). Chamber experiments indicate further declines with increased atmospheric
CO2 concentrations (151). The impact of significantly reduced dietary protein for bees and other
pollinators is currently unknown.

Although the net effect of climate change on pollinators remains uncertain, studies indicate
that a reduction in animal pollination would decrease yields of numerous pollinator-dependent
food crops that play important roles in providing food and micronutrients to humans (32, 47).
Recent modeling indicates that global pollinator declines would increase child mortality and birth
defects from increased vitamin A and folate deficiency, respectively, and also increase the risk of
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heart disease, stroke, diabetes, and certain cancers in adults as a result of reduced dietary intake of
fruits, vegetables, nuts, and seeds (139).

2.5. Agricultural Labor

Physical human labor is an important determinant of food production, especially in less-developed
regions that do not rely on mechanization. Such labor can, however, be limited by the need to
regulate body temperature under conditions of high ambient temperature, high radiation and
humidity, and low wind. Heat already limits agricultural labor in tropical and subtropical regions
at certain times of the day and year, and climate change is expected to impose further constraints
on human performance (81).

Historical meteorological estimates and model predictions can be used to assess how climate
change would influence human capacity for labor (44). Under the moderate RCP4.5 emissions
scenario, heavy outdoor labor would be restricted to 50% of the workday during the hottest month
in much of India and portions of sub-Saharan Africa and Australia by the end of the century. Under
the high-emissions RCP8.5 scenario, such restrictions on labor during the hottest month become
widespread across tropical and subtropical regions by the end of the century (44).

Labor in temperate regions is expected to be affected less by warming, but an economic assess-
ment found that US labor productivity in agricultural and other sectors involving intense outdoor
activity would still decline by 0.6–3.2% by the end of the century, given a high-emissions scenario
(68). Increased mechanization may help replace human work capacity that is lost to heat stress,
though some agricultural communities will have restricted economic potential for such substitu-
tion, particularly in the developing world (81). How the direct effect of climate change on human
capability will manifest in terms of changes in agricultural practices and overall production is still
unclear, but there exists the concerning prospect of substantial and disproportionate impacts in
the tropics on account of higher baseline heat stress, physical labor playing a more central role in
productivity, and lower potential for adaptation.

2.6. Nutrient Losses

Beyond its influence on yields, increasing CO2 levels are also changing the nutritional composition
of crops. Experiments in which food crops are grown at elevated CO2 levels, both in chambers
and in open-field conditions using free air CO2 enrichment methods, show reductions in protein
content in the edible portion of these crops. C3 grains and tubers including rice, wheat, barley, and
potatoes experience 7–15% reductions in protein content, whereas C3 legumes and C4 crops show
either very small or insignificant reductions (109). When these nutrient changes are modeled across
current diets, more than 200 million people are expected to fall below thresholds of recommended
protein intake, and protein deficiency levels among those already below this threshold will worsen
(96).

Crops grown at elevated CO2 also exhibit lower concentrations of important minerals. CO2

concentrations of 550 ppm can lead to 3–11% decreases of zinc and iron concentrations in cereal
grains and legumes (109) and 5–10% reductions in the concentration of phosphorus, potassium,
calcium, sulfur, magnesium, iron, zinc, copper, and manganese across a wide range of crops under
more extreme conditions of 690 ppm CO2 (92). These declines in zinc content are expected to place
150–200 million people at new risk for zinc deficiency and will exacerbate existing deficiencies in
more than 1 billion people (108). In addition, roughly 1.4 billion children ages 1–5 and women of
childbearing age, which represent 59% of the world total in these groups, live in countries where
current anemia rates exceed 20% of the population and where dietary iron intake is expected
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to decrease by 3.8% or more as a result of these CO2-mediated nutrient changes (M. R. Smith,
manuscript in preparation). Overall, hundreds of millions of people are expected to be placed at
risk of zinc, iron, and/or protein deficiencies as a result of rising CO2 concentrations, and the
estimated two billion people already experiencing zinc or iron deficiency will likely see those
deficiencies exacerbated by this effect.

3. FISHERIES

Although agriculture dominates global food production with respect to total dietary energy,
seafood is important in the supply of protein, minerals, vitamins, and fatty acids for many pop-
ulations around the world (15, 18, 59, 79). Recent estimates suggest that declining fish harvests
will leave 845 million people vulnerable to deficiencies in iron, zinc, and vitamin A and 1.4 billion
people vulnerable to deficiencies of vitamin B12 and omega-3 long-chain polyunsaturated fatty
acids (59). The global poor are particularly at risk of nutrient deficiencies because of their limited
access to dietary alternatives, such as other livestock and fish products, vitamin supplements, and
nutritionally fortified foods.

Independent of climate change, the current trajectory of marine fish catch is concerning. Recent
analyses from the Sea Around Us project indicate that global fish catch peaked in 1996 and has
been falling by 1.22 million metric tons (nearly 1% of total global catch) per year since then, a
decline three times faster than that reported by the United Nations (UN) Food and Agriculture
Organization (FAO) (118). An analysis of nearly 5,000 fisheries worldwide representing 78%
of global reported fish catch showed that 68% of global fish stocks have fallen below biomass
targets to support maximum sustainable yield, and 88% are expected to fall below targets by 2050,
indicating that decreases in the exploitation rate are needed to rebuild fish stocks (39).

3.1. Sea Temperature Rise

Climate change is predicted to warm, deoxygenate, and acidify the oceans (58, 122), thereby
altering net primary production (21, 86) and generally displacing habitats poleward (35, 57).
Warming may lead to increased stratification of oceanic layers and reduce the upward flux of
nutrients into the euphotic zone (the surface layer of water where photosynthesis can occur),
leading to spatiotemporal variations in net primary productivity of phytoplankton (22, 34, 45, 86).
One recent study suggests that the response of plankton communities to increases in sea surface
temperature will be variable depending on location and nutrient richness (84). These changes in
abundance and distribution of plankton communities are important because plankton forms the
foundation of the marine food web.

A recent study indicates that, as a result of these changes in size and distribution of plankton
communities, under a high-emission RCP8.5 scenario, global fish catch potential would decrease
by 3–13% by 2050 relative to recent decades (35). Another study indicates that the biomass of
tropical fish communities will also be smaller by about 20% in 2050, given a high-emission scenario,
on account of ocean warming and associated reductions in oxygen content (36). Declines of 30–
60% have been suggested for some tropical shelf and upwelling areas, including, most notably, in
the eastern Indo-Pacific, the northern Humboldt, and the North Canary Current.

For aquaculture, the net impacts of a changing climate are incompletely characterized and
likely to be quite heterogeneous. Aquaculture systems are likely to experience some benefits from
climate effects through increased food conversion efficiencies and growth rates of fish under higher
water temperatures, an extended growing season, and a larger potential range for aquaculture
operations at higher latitudes due to reductions in sea and lake ice cover (8, 119). However, higher
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temperatures may also increase the spread of infectious disease among fish, increase the risk of
harmful algal blooms, expand the range of aggressive invasive species such as the Pacific oyster
and their associated pathogens, and accelerate the uptake of toxins and heavy metals in freshwater
shellfish (41).

3.2. Ocean Acidification

Current understanding of how acidification impacts ocean productivity is limited, often to single
species responses. Characterization of larger food web dynamics and systemic responses remains
a major challenge (129). However, it is clear that coral reefs—ecosystems critical for many coastal
tropical fisheries—will be heavily degraded by warming and ocean acidification (38). One study
estimates a 92% reduction in coral reef habitat by 2100 (140).

3.3. Nutrient Quality

Climate change may also influence the nutrient content of seafood through changing the nutri-
tional composition of phytoplankton communities (16), with consequent effects up the food chain
(94). Warming leads to reduced long-chain polyunsaturated fatty acid content in phytoplankton
(66) and in cold-water pelagic fish, such as sprat and anchovy (114). Another study suggests that
uptake of minerals such as iron becomes more limited in warmer and more acidic waters (34),
though further examination of impacts on micronutrient composition is needed.

Similar to agriculture, the direct effects of CO2 emissions combined with attendant changes
in climate lead to substantial uncertainties regarding the implications for the availability of food
and nutrition. For fisheries, however, the compounding complexity of how the entire marine food
chain will be altered leads to perhaps even greater uncertainty.

4. ANIMAL HUSBANDRY

Heat stress is a major determinant of livestock productivity. Studies have documented that in-
creased heat stress in cattle and pigs—with regard to both individual extreme events and accumu-
lated excessive heat over time—decreases productivity, food intake and weight, chances of survival,
and fertility (17, 110). For poultry, heat stress reduces growth, egg yield and quality, and meat
quality (82). However, much uncertainty remains regarding the ability of livestock systems to
adapt. Livestock systems are generally regarded as more adaptable than crop systems, especially
with regard to the less-industrialized livestock systems of developing countries (142). On the
other hand, the main response of livestock to heat stress is higher water consumption, which can
be jeopardized by drought, especially in areas with rudimentary water systems, such as in portions
of South Asia and sub-Saharan Africa (121).

As with agriculture, how climate change will influence forage depends on local interactions
among CO2 levels, temperature, and precipitation. Increasing global CO2 levels are predicted
to improve the productivity of pasturelands, whereas higher temperatures can have a positive or
negative effect, depending on uncertain changes in precipitation and soil water availability, whether
temperatures exceed tolerable ranges for certain species, and nutrient availability (77). Higher CO2

conditions may also have competing effects on the protein that is available for grazing animals by
shifting species compositions toward more protein-rich C3 plants (46) but also causing reductions
in the protein content of those plants through altering carbon-to-nitrogen ratios (99). It is difficult
to generalize climate impacts on livestock production systems, and more research is needed to
characterize localized impacts with respect to particular systems (e.g., dryland pastoralists) (142).
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5. EFFECTS ON FOOD SECURITY AND NUTRITION

In sum, global food production is likely to be altered through several climate change–related
pathways affecting the quantity and quality of food produced in the agricultural, fishery, and live-
stock sectors. Although precise quantification of the net impacts of these environmental changes
is beyond the reach of our current understanding, there is a troubling prospect of disrupting our
capacity to maintain an adequate supply of nutritious foods. If we cannot do that, the purchasing
power of wealthier populations will ensure that food flows towards the wealthy, leaving the poor
with an insufficient supply. Of course, nutrition and food security are determined not only by
aggregate supply, but also by the ability of people to access, afford, and use food (10, 135).

5.1. Conflict

Political and economic forces dictate food access. Discrimination, especially on the basis of gen-
der, ethnicity, caste, and wealth, impedes participation in markets, legal recognition of land and
asset ownership, and other rights critical to attaining food security (95). Climate change may ex-
acerbate social exclusion by increasing competition for scarce natural resources and forcing mass
migration (9), factors that played important roles over the past few decades in severely restricting
food access during civil conflicts in sub-Saharan Africa and the Middle East (26, 65, 80). The
hypothesized link between climate change and violence is controversial (24, 70), but the evidence
base is growing. A recent review of 60 primary studies identified a strong and significant historical
relationship between the two phenomena (69), suggesting that projected increases in temperature
were associated with higher levels of intergroup violence (e.g., civil wars), with the hardest-hit
regions being precisely those at greatest risk of undernutrition—sub-Saharan Africa and South
Asia. Such high-intensity conflict and associated population displacement would likely lead to
more acute undernutrition, in addition to other health burdens.

5.2. Increases in Prices of Staple Foods

Climate change will also intensify economic pressures on food access. Simulations run using the
International Food Policy Research Institute’s IMPACT (International Model for Policy Analysis
of Agricultural Commodities and Trade) model suggest that inflation-adjusted prices of the three
most important staple grains in the world—wheat, rice, and maize—would increase 31–106% by
2050; assumptions about climate change mitigation, population growth, and income growth would
determine the exact values within that range (112). For some smallholder farmers, the benefits
of greater income may outweigh the costs of more expensive food (138), and landless laborers
working on these farms may also see wage increases. Most multicountry analyses, however, sug-
gest that higher food prices will generally increase poverty and food insecurity not only for the
urban poor (for whom the effect is unambiguous), but also for rural people, the majority of whom
are net food consumers (76). Recent reviews of price elasticities of food demand in low-income
countries found that price increases were associated with steep declines in the consumption of all
food groups, suggesting that, at least at the scale of national economies, higher prices are likely
to reduce nutrient intake (62). However, the magnitude of impacts will vary depending on wealth
across and within countries, as well as by food group. The overarching lesson from the litera-
ture is that localized analyses are necessary: The impact of food price increases on food security
depends on the structure of the economy—including the ability of farmers to adapt to volatile
ecological and economic conditions (102)—and the relative magnitude of price changes across
foods.
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5.3. GDP Growth

The influence of food prices on consumption may, however, be swamped by the rate of growth in
gross domestic product (GDP) (133). Projecting growth trajectories is difficult, even without con-
sidering the additional variable of climate change. One recent study takes an innovative approach
by looking at the historical association between macroeconomic productivity and temperature
within countries, a relationship driven largely by the effects of extreme and/or persistent heat on
labor supply, labor productivity, and crop production. The authors find that unmitigated climate
change may result in 75% lower income, relative to a temperature-neutral scenario, in the poorest
nations by 2100. In a low-economic-growth/rapid-climate-change (RCP8.5) scenario, 43% of all
countries in the world would be poorer in absolute terms by the end of the century than they are
now (25).

Despite the sensitivity of the above study to underlying assumptions, the qualitative message
from all the scenarios is clear: Unmitigated climate change has the potential to lead to immense
economic losses, which may translate to greatly weakened consumer purchasing power to obtain
food in the developing world. Even if improved crop yields raise the level of aggregate global
production, markets and food systems in poor countries may continue to struggle to access the
foods that are available on the global market. The disconnect between where food is produced
(and able to be purchased) and where food is needed may grow wider owing to the expected
impacts of climate change on low-latitude agricultural systems. These dangers combine with the
demographic reality that most of the world’s anticipated population growth of 2.5–3.0 billion
people over the coming decades is expected to occur in cities in the developing world.

5.4. Food Utilization and Disease

Food security extends beyond the supply and demand dynamics of markets. Utilization of food
also matters: protecting food stocks against spoilage and pests (67, 116), cooking safe and nutri-
tious meals, and being healthy enough to absorb and retain the nutrients consumed. This last
point is critical; when safe water and sanitation systems are absent, precipitation extremes—both
increased rainfall and prolonged drought—lead to increased exposure to pathogenic bacteria,
parasites, mycotoxins, and a host of viruses (126). The resulting enteric infections and diarrheal
diseases have profound impacts on child nutritional status, growth, and development (63, 113).
An ecological analysis of 171 nationally representative demographic and health surveys from 70
countries across the world between 1986 and 2007 found that access to improved sanitation and
water was significantly associated with reduced levels of stunting in children under 5 years of age
(51).

5.5. Volatility

Future projections of food availability, access, and utilization are usually spoken of in terms of
mean trends: levels of production, prices, income, disease, etc., as they change over time. Also
important, however, is a lack of volatility, also known as stability. As climate change increases
spatial and temporal variability in food production patterns, prices may also fluctuate more greatly.
The uncertainty bounds for projecting the impact of climate change on any of the determinants of
food security are large—and much work remains to be done especially with respect to the volatility
of food access and utilization—but most biophysical and economic models share the conclusion
that the future world will experience more volatile food pricing.
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6. FUTURE DIRECTIONS AND CONCLUSIONS

This review focuses on the anticipated effects of climate change on global food security. There
are substantial uncertainties regarding the degree to which environmental conditions will change;
the response of plants, animals, and farm labor; and potential adaptations to these changes. Al-
though these uncertainties render predicting exact changes in future food production difficult,
the evidence base strongly implies the need to prepare for a wide range of possible outcomes.
Furthermore, our review of the evidence indicates that environmental changes are generally tilted
against environments that are already hot and have the least resources for adaptation.

In most instances, further research will reduce these uncertainties. We have highlighted some
research priorities in this review. One area not already mentioned is the importance of more ac-
curately describing what people in different populations eat. Estimates of food availability derived
from the FAO have previously been used to model health impacts of pollinator declines (139),
reduced fish catch (59), and nutrition and health impacts stemming from elevated atmospheric
CO2 levels (108). However, these estimates of food availability have several flaws: They focus
on availability rather than actual intake; they lack information about how different foods are dis-
tributed across age, sex, and income groups, as well as how foods are distributed across subnational
populations; and they inadequately account for wild harvested foods, including fish and bushmeat.
In addition, our knowledge about the nutrient composition of these foods is limited to several
regional food composition databases, many of which have not been updated for decades and are
incomplete. The result is a large gap in our understanding of what people are eating, where their
nutrients are coming from, and what the relative impact of altered nutrient intakes from changing
environmental conditions might be for their overall health.

Policy and programmatic action to improve current and future food security is critical. Many
regions still have large gaps between current and practically attainable crop yields (88, 107). Agri-
cultural development through Green Revolution techniques elevated yields in many countries
through adoption of modern crop varieties, increased use of agronomic inputs, and greater irri-
gation (120, 143). Yet these gains are distributed unequally. Areas of sub-Saharan Africa suffer
severe food insecurity, relatively low-yielding croplands, and the potential for large relative yield
gains (131). Closing yield gaps requires addressing a host of interacting agronomic and socio-
economic constraints (88, 105, 145). The joint evolution of agricultural development and global
environmental change will together determine future levels of crop productivity.

Reducing food loss and waste would also help meet future demand. Nearly one-third (1.4 billion
metric tons annually) of global food production is either lost or wasted. Most of the food waste in
developed countries takes place in consumer households, whereas loss occurs primarily from pests
and fungi prior to reaching markets in developing regions (49). Producing crops for direct human
consumption, as opposed to animal feed, could also increase globally available dietary energy (30),
though animals can be important for nutrition and economic welfare for smallholder farmers.

Better management of environmental change—especially reducing greenhouse gas emissions
and other pollutants, more sustainably managing fisheries, and improving efficiency in the agricul-
tural use of land, water, and chemicals—would alleviate the stress placed on many food systems.
Striking the correct balance and scope of action between these many policy priorities requires more
complete understanding and precise accounting of how environmental transformations determine
food production and global health.
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