Chapter 21

Light (technical)

In this chapter we will describe in more detail how light amdlections are properly
measured and represented. These concepts may not be mgéarsdaing casual com-
puter graphics, but they can become important in order toiglo fuality rendering.
Such high quality rendering is often done using stand aloftevare and does not use
the same rendering pipeline as OpenGL. We will cover somaisfrhaterial, as it is
perhaps the most developed part of advanced computer geagiis chapter will be
covering material at a more advanced level than the resiobtiok. For an even more
detailed treatment of this material, see Jim Arvo’s PhDig&3 and Eric Veach’s PhD
thesis [71].

There are two steps needed to understand high quality lightlation. First of
all, one needs to understand the proper units needed to mdaght and reflection.
This understanding directly leads to equations which mbadel light behaves in a
scene. Secondly, one needs algorithms that compute apmateisolutions to these
equations. These algorithms make heavy use of the ray ¢ratfirastructure described
in Chapter 20. In this chapter we will focus on the more fundatal aspect of deriving
the appropriate equations, and only touch on the subseaigorithmic issues. For
more on such issues, the interested reader should see [71, 30

Our basic mental model of light is that of “geometric optic®le think of light as
a field of photons flying through space. In free space, eackophities unmolested
in a straight line, and each moves at the same speed. Whearnghbit a surface,
they scatter in various directions from that point. We alssuane that the field is in
equilibrium.

21.1 Units

If we want to carefully simulate realistic images, we firsedeo understand the units
used for measuring light. We will start this discussion veittime simple photon mea-

205

CHAPTER 21. LIGHT (TECHNICAL)

Figure 21.1: A sensor counts the photons that pass thr&ufgbm incoming directions
within the wedgdV. This gives usb(W, X), a measurement called radiant flux.

surements. These will lead us to a very useful unit callechraxb.

21.1.1 Radiant Flux

We can think of light as a bunch of photons flying through spacarious directions.
Imagine a “sensor{W, X) out in space, wher& is a smooth imaginary reference
surface andV is awedgeof directions. In this sensor, we count the number of photons
that come in from any direction within the wedgé and pass through the surfage
There may be a physical surface of our scene coincident Wittor the imaginary
sensor may be sitting in free space. See Figure 21.1.

This sensor then counts the number of photons it receivéssesond. Each photon
carries energy measured in unitsjofiles By dividing the energy by time (measured
in seconds) we get a measurement called radiant flux, mebsuweatts We use the
symbol® (W, X) to represent such a measurement.

Next, we assume (or verify by experiment) thiafiV, X') varies continuously as
we continuously alter the geometry of the sensor (tranglatate, or change its size).
Given this assumption we are now in the position to defineva sfaiseful radiometric
measurements.

21.1.2 Irradiance

First, we want to define a measurement of light, say over asf@all planar sensoX
with normal7i, that does not depend on the actual size of the sekisowe can get
this by simply dividing our measured radiant flux by the aréthe sensor (measured
in square meters). Doing this, we get a measurement
(W, X)
EW,X):=—""~*
| X|

We can measur& (W, X) for smaller and smalleK around a single point. Under
reasonable continuity assumptions ab®uthis ratio converges (almost everywhere)

Foundations of 3D Computer Graphics 206
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

w
w

ﬁ/‘ lim

Figure 21.2: We can divide radiant flux h¥|. In the limit, this becomes the pointwise
incoming irradiance measuremei (W, z).

to a value that we call an (incomingjadiancemeasurement, and write &s; (W,).
See Figure 21.2. We need to keep aroundtiparameter in order to specify the orien-
tation of the smaller and smaller sensors used in this measant sequence. If we had
considered the same poihin space on a different surfacé’ with a different normal
7/, we would obtain a different quantitiz. (W, z). (Moreover, since the wedd#& is
finite, there is no easy way to relal; (W, z) to Ez (W, Z). Later on, when we define
a quantity called radiance, we will shrifk down to a single vector. In that case, a
simple cosine factor will be able to relate measurements different normals.)

Often, in the literature, the first argument fBris dropped from the notation, and
is inferred somehow from conventions and context. For exenp some contexts,
it may be clear that? is the entire upper hemisphere above the point. Simildnly, t
normal parameter is often dropped from the notation andriefefrom context.

Suppose our finite sensor surfakeis broken up into a bunch of smaller surfaces,
X;. Then we can compute flux over the entire sensor as the sum

(W, X) = Z‘I’(W, X;) = Z | Xi| E(W, X;)

Likewise, under reasonable continuity assumptions aboute can compute flux from
pointwise irradiance as

(W, X) :/ dA Ej (W,)
X

Where |, is anintegral over the surfacé andd A is an area measure over the positions
z.

21.1.3 Radiance

We next want to define a measurement that does not depend siz¢hef1V, and so
we want to divide out byWW|, the solid anglemeasure o#¥. The solid angle of a

Foundations of 3D Computer Graphics 207
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

s
1S9
=

lim

&
_la
= = 0
_ﬂ

h

S

SN

&
=
=

&

&
=

&

8

3

Figure 21.3: We can divide an irradiance measuremefifbto obtain a measurement
La(W, %) = % This converges td.; (i, Z). By dividing out bycos(6) we can
convert this tol._z(w,). Dropping the subscript gives us the radiance measurement

L(w,) used for a ray.

wedge of directions from the origin is simply defined as threaarovered by the wedge
on the unit sphere. These units are caieztadianswhere the wedge &ll directions
coversdr steradians.

We now define a new radiometric measurement by dividingiiarazk by steradians

- Ez(W,z)
Li(W, %) = ———=

We can measure this using smaller and smaller wedges arotewda @ pointing
towardsz. Again, under reasonable continuity assumptionstfdhis converges (al-
most everywhere) to a measurement which we Ealks, 2), wherew is now a single
direction vector, and not a wedge. See Figure 21.3.

We can now drop the dependencerby converting our measuremehy; (W, z)
to that of L_5(, Z). In other words, we consider what the measurement would have
been had theéX plane been perpendicular to the incoming beam. To do thid)ave
to account for the ratio between the areas of sensor surfadbgy are tilted. This can
be calculated as

-~ - ~ Lﬁ(lﬁa 57)
L =L_z = P\

(@, 7) (W, 7) cos(6)
whered is the angle betweeii and —w. We now drop the normal parameter, writing
this simply asL(w,) instead ofL_z(w,z). We call this measuremeiricoming
radiance See Figure 21.3. In summary

L(#,7) = —— lim — (lim M) (21.1)

cos(0) g Wi \x=z |X]|
Going the other way, given a spatially and angularly vanjit@,), we can com-

Foundations of 3D Computer Graphics 208
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

Figure 21.4: We can shift a sensor along a central direafiofn the limit for small
wedges, they will be measuring mostly the same photons. En@mve can conclude
that radiance is constant along a ray.

pute the radiant flux over a large sengir, X) as

<I>(VV,X):/X dA /W dw L(W, &) cos(#)

wheredw is a differential measure of steradians. Radiance measuntsrallow us to
measure light at a point and direction without keeping trafcthe size and orientation
of the measurement device. Moreover, even though our regliastation includes a 3D
point, Z, as one of its variables, in fact (see below for an argumeadjance remains
constant along a ray in free space. Thatis

L(w@,7) = L(, 7 + @)

For a pointon a surface, it is also useful to have a measurehigns) of outgoing
radiancefrom the pointz in the directions. (We reverse the order of the arguments to
L to distinguish incoming from outgoing radiance). We canrdefhis as

~ 11 B(X,W)
LE@) = —— lim —— [Lim 2"
() = os(y ™ T (xli“f x|)

where® (X, W) is the radiant flux of photorlgavinga finite surfaceX and going out
along vectors in the wedd#& (again, note the order of the arguments).

In free space, itis clear thdt(w,) = L(Z,).

Radiance is the most useful quantity needed for computtiyht simulation. In-
deed, we can go back to Chapters 14 and 20 and interpret thetbeds using these
units. For example, when we calculate the color of some 3Dtgoin an OpenGL
fragment shader, we can interpret this as computing theomggadiancel(z, v),
wherev is the “view vector”. This outgoing radiance value is alse thcoming radi-
ance value at the corresponding sample location on the iplage, and is thus used
to color the pixel. Likewise, in ray tracing, when we traceag along the rayz, J)
we can interpret this as calculating the incoming radiaratee;L(—cZ).

Constancy of Radiance Along a Ray (optional)

Suppose, in free space, that we slide our se(BgrX) along the vectots to obtain
the shifted sensofiV, X’) whereX’ = X + «. (See Figure 21.4). In this case our

Foundations of 3D Computer Graphics 209
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

measured fluxes will not agrdg W, X) # (W, X’). But if we compute radiance, in
the limit we will get agreement. In particular

L1 B(WX)
L(w, %) = cos(0) I/Ilflinw T (11m)

lim

1
— { lim — A
cos(6) (Xlgli | X| w—z W]
_ 1 (m11 mlwmx+ww

cos(f) o | X | w—w W]
1 i Lo 207X
T Cos(0) \xiwad [X wea W]

: 1 . (W, X") .
— lim — 1 ——— | = LW I
cos(8) W W] (X/i%iw x|) (& +)
In the third line we use the fact that, in the limit for very dhvegedges, our sensor and
shifted sensor will be measuring the same set of photongjaisd
oW, X")

lim —) =
W (W, X)

As a result of this we say that radiance is constant along.a ray

Fundamentally, we can think of this constancy as arisingnftbe combination
of two facts. First, our physical assumptions imply thatfree space, the measured
flux, ®, depends only on the set of directed lines that are measnotdyhere they
are measured. Secondly, for any set of lines, say cdlled we parametrize the
lines by directions and by where they hit some plag, then theline measurement
Js dw dAx cos() will, in fact, not depend on the choice of plae Using this ter-
minology, radiance is simply theensityof flux over the line measure, and the choice
of Z is not relevant.

21.2 Reflection

When light comes in froni¥/, a wedge of incoming directions about the vecifr
and hits a point on a physical surface, then some of that light can get reflexffe
the surface. We make the simplifying approximation/asdionghat all reflection is
pointwise, i.e., light hitting a point bounces out from tisatgle point only. Let us
measure the light that is reflected out alovig some wedge of outgoing directions
around an outgoing vectar. The particulars of this bouncing are governed by the
physical properties of the material. We wish to represembishavior of this bouncing
with some functionf describing the ratio of incoming to outgoing light. What diaf
units should we use for this ratio? Our governing principlthat we wané ratio that
convergesas we use smaller and smaller incoming and outgoing weddes iniplies
our second principle (that is desirable in and of itself): want a ratio that (for small
enough wedgesjoes not actually depend on the size of the wedges

Foundations of 3D Computer Graphics 2 10
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

g

<L

S

Figure 21.5: A BRDF measures the ratio of incoming irradétocoutgoing radiance.

In this section, we will derive the primary way to describ@eetion, called the
BRDF. For special materials, like pure mirrors and refrgctnedia, we will use a
slightly different representation.

21.2.1 BRDF

We can verify experimentally that most materials (exclgdgare mirrors or lenses, see
below) have the following diffusing behavior. For any fixeddming light pattern, the
outgoing light measured along any outgoing wedge changascmusly as we rotate
this wedge. Thus if we double the size of a small outgoing mnegent wedgé’, we
will see roughly twice the outgoing flux. Therefore, to set tumerator of our rati@

in a way that does not depend on the siz& ofve should use units of radiance. Let us
call this outgoing measuremert? (z,). We place a superscript dit to make clear
that we are referring here to the measurement of bouncedpfot

Similarly, (but possibly surprisingly) we can verify thédr most materials (again
mirrors and lenses excluded), if all of the light is comindriom a single small wedge
W, and we double the width of this incoming wedge, the amourftuf reflected
along a fixed outgoing wedge, and thus the amount of radiafleected along a fixed
outgoing direction, will roughly double as well. Thus, totgeratio that does not
depend on the size of thé’, we need the denominator to double in this case. We
accomplish this by measuring the incoming light in unitsroddiance.

Putting this together, we see that we should measure refteas

fea(W,0) =

Where we use the superscript to refer to photons that have beemittedby some
light sources and have not yet bounced. Once again, by mékéimcoming wedge
smaller and smaller around a fixetlthis quantity converges to a measurement denoted
fz7 (W,). This function,f, is called thebi-directional reflection distribution functign

or BRDF Itis a function that can vary with both incoming and outgpitirections. See
Figure 21.5.

Foundations of 3D Computer Graphics 2 l 1
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

Figure 21.6: An array of BRDFs captured by a measuring de¥oam [47],©ACM.

The simplest BRDF is the constant BRDE 7 (w,#) = 1. This represents the
behavior of a diffuse material. In this case, the outgoirdiaiace at a point does not
depend o at all. (Subtlety: this does not mean that incoming photoasseaattered
equally in all outgoing directions. In fact, on a diffusefswe more of the photons are
scattered in the direction of the surface normal, and theusutnaf scattered photons
drops by a cosine factor to zero at grazing angles. In canttes outgoingadiance
does not depend on outgoing angle, since the definition admad includes its own
cosine factor which cancels this “drop-off” factor. Infuély speaking, when looking
at a diffuse surface from a grazing angle, fewer photons amgrgy towards you per
unit of surface area, but your are also seeing more surfaeethrough your sensor.)

More complicated BRDFs can be derived from a variety of mésho

e We can simply hack up some function that makes our mateals hice in
pictures. This is essentially what we did in Section 14.

e We can derive the BRDF function using various physical aggions and statis-
tical analysis. This involves a deeper understanding opthesics of light and
materials.

e We can build devices that actually measure the BRDF of retdniads. This can
be stored in a big tabular form, or approximated using sometional form. See
Figure 21.6.

Suppose we want to compute the outgoigz, ¥') at a point on a surface with

Foundations of 3D Computer Graphics 2 12
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

Figure 21.7: To compute the outgoing reflected radiahééz, o), the reflection equa-
tion integrates all of the incoming rayscoming towards:.

normalii, due to light coming in from the hemisphet#, abovez. And supposed
is broken up into a set of finite wedg#g;. Then we can compute the reflected light
using the sum

LY&,0) = Z|Wi|fgz,ﬁ(Wi,17) Li (Wi, &)

K2

Likewise, usingf; 7 (w,) and L¢(&, &) we can compute the reflected light using
the integral:

L'(z,9)

/ dw f.(,75) L(d, 7) (21.2)
H

/H dw fz.q7(W, V) L(W, &) cos(d) (21.3)

This is called theeflection equatiopand it is the basis for most of our models for light
simulation. See Figure 21.7.

21.2.2 Mirrors and Refraction

Pure mirror reflection and refraction are not easily modekidg a BRDF representa-
tion. In a mirrored surfacd, ! (7, #), the bounced radiance along a ray, depestig
on L¢(—B(%),), the incoming radiance along a single ray. Hétds the bounce
operator of Equation 14.1.

Doubling the size of an incoming wedge that includeB (%) has no effect on
LY(z, 7). Thus, for mirror materials, we represent the reflectioralvar as

Foundations of 3D Computer Graphics 2 13
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

L'(7,7)

a0 = LB, 3

(21.4)

wherek; (¥)) is some material coefficient. We replace the reflection éguatith
LY(7,7) = ks 7(7) L¢(—B(v), &)

No integration is required in this case. For this reasonranireflection is easy to
calculate algorithmically, and easily done in a ray traginggram.

When light passes between mediums with different indiceefsaction, such as
when light passes into or out of glass, the rays bend usingpropriate geometric
rule. Like mirror reflection, at the material interface, tiagliance along each outgoing
light ray is affected by the radiance of a single incomindpiigay. Once again, it is
easiest here to use “ratio of radiance” units, as in EQudgar).

21.3 Light Simulation

The reflection equation can be used in a nested fashion teilbe$ow light bounces
around an environment multiple times. Such descriptiopgcally result in definite
integrals that need to be calculated. In practice, this agatfpn is done by some sort
of discrete sampling over the integration domain.

In this section, we will start with the simple light simulati of our shading model
from Chapter 14 and then build up to more complicated models.

We use the symbal with no arguments to represent the entire distribution ef ra
diance measurements in a scene due to a certain set of phStwisan’. includes all
incoming and outgoing measurements anywhere in the sceaeis@l.© to represent
unbounced (emitted) photons, afifl to represent the radiance of photons that have
bounced exactly times.

21.3.1 Direct Point Lights

In our basic OpenGL rendering model, our light comes not fewea lights, but from
point lights Such point lights do conform to our continuity assumptiand are not
so easily represented with our units. In practice, for plaghits we simply replace the
reflection equation with

LYN&,7) = fan(—1,7) ES(H,)

whereE*¢ is the unbounced irradiance coming inialue to the point source arids
the “light vector” pointing fromz to the light. We are free to calculat&® any way we
want. For example, in the real world, the irradiance at a tpdidue to a very small

Foundations of 3D Computer Graphics 2 14
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

Figure 21.8: Integration over area lights cause soft shadéwm [69],©ACM.

spherical light source is proportional @#, whered is the distance between the
light and the surface. This is because the solid angle of gl dight source drops
off with %. (On the other hand, this distance drop off term tends to rpadtares too
dark and so is often not used). Also note that, in the lange&@ection 14, we have
cos(f) =i - 1.

21.3.2 Direct Area Lights

Suppose our light sources have finite area, then we reallyedd the integral of the
reflection equation. In this case, the integrand d¥en Equation (21.2) is only non-
zero for incoming directions’ that “see” the light.

If we approximate the integral using some finite number odiming directionsy;,
we can use a ray tracing approach to calculate tfhééé,, z) values. When random-
ness is used to select the directions, this is called digtab ray tracing [13]. As ray
intersection is an expensive operation, these integralbeaery expensive to compute
accurately.

When the light source is partially occluded by other geoynétis integration will
produce shadows that have soft boundaries. This happeasid®aaearby points on
a light-receiving surface may see different amounts of tiea éight source. See Fig-
ure 21.8.

Foundations of 3D Computer Graphics 2 15
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

Figure 21.9: To comput&?, we need two nested integrals. For each directibn
coming intoz, there we find the point’ hit by the ray as shown. We then need to
integrate the hemisphere abaok/e

21.3.3 Two Bounces

We can compute.?, the light distribution of twice bounced photons, by usihg t
reflection equation, but replacing the “input® with L',

L3(%,7) / dw fz (W, ¥) cos(0) L' (0, T)
H

/ dw fz 7(W, V) cos(@)/ dw' fz q/ (W, W) cos(0") L (w', &)
H ’

/ dw/ dw' fz.7(wW,0) cos(8) fzr 7 (WD) cos(") L (', 7")
H ’

In this expressiong’ is the point first hit along the rayz, —). At the intersection
point, 7’ is the normal H' is the upper hemisphere amdl is an incoming direction,
making an angle of’ with 7i’. See Figure 21.9.

Once computed, we can add togethé(z, 7) + L' (z,v) + L*(Z, ¥) and use this
as the point’s observed color at the image plane.

As suggested by the second line in the above equation, ongéonamputel? is
by recursively evaluating these nested integrals usingluligion ray tracing. That is,
an outer loop integrates the hemisphere abavéor each sampled directian, we
hit some pointz’. We then use a recursive distribution ray tracing call tegnate the
hemisphere above it. See Figure 21.9.

Alternatively, as suggested by the third line in the aboveagign, there are also

Foundations of 3D Computer Graphics 2 16
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

Figure 21.10: The integral that computéscan be thought of as summing over paths
of length two.

other ways to organize this integration. Let us denoté’bthe point first hit along the
ray (#', —a'). Then, in the integral, each setting of the variatgtésw’) corresponds to
ageometric path of length tw@z, 7',). We can think of this integrand as calculating
the light emitted at”, reflected at’, and then reflected at out towardsy. As such,

it is often convenient to think of this not as a nested integvar two hemispheres, but
as an integral over an appropriate space of paths. Thisteaasintegration algorithm
known as path tracing [71].

This second bounce liglit is less important than direct lighting, but it is needed to
properly simulate blurry reflections of the surroundingiemvment. See Figure 21.11.
It also produces the less visible effect called color blegdsee again Figure 21.11).
Caustic effects can also be seen duéto In this case, light bounces off mirrored or
refracting objects and creates bright spots on diffuseased. This light then bounces
off towards the eye. See Figure 21.12.

21.3.4 And SoOn

In the real world, light bounces around the environment nraayy times. Thus, the
total observed lightL! is the sum of light that has come from emitters and bounced
any number of times.

L'=L°+ L'+ L?>+ L%+ ...

Some light is absorbed at each bounce, making the higheicedarms become small,
and the sum convergent.

Higher bounces account for the overall distributions ohfigess and darkness in

Foundations of 3D Computer Graphics 2 l 7
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

Figure 21.11: Second bounce light accounts for the blurry reflection in the glossy
floor of the sphere as well as the color bleeding from the wait® the ceiling. One
path of length two is shown. From [29F)Springer.

the environment. See Figure 21.13. In most cases, this cdoriewith low accuracy
and at a low spatial resolution.

In software rendering, such integrals can be computed wusnpling and sum-
ming. Successful methods here include distribution ragiiga[13], path tracing [71],
the “Radiance” algorithm [75] and photon mapping [30].

In OpenGL, most of these effects are simply hacked using eamation of mul-
tiple pass rendering and precomputed textures. One pogpudértechnique is called
“ambient occlusion” [39].

21.3.5 The Rendering Equation (optional)

Instead of thinking ofL? as an infinite sum of.?, we can also think of.? as the
solution to the so-callegendering equationThis point of view can ultimately lead to
other insights and algorithmic approaches to light sinmioifat\We include it here, as it
is interesting in its own right.

Let us begin by writing the reflection equation in shorthasd a
L' =BL*

whereB is the bounce operator mapping light distributions to lidistributions. More
generally, we can use the reflection equation and bouncatmpéo writeL*+! = BL?.

Foundations of 3D Computer Graphics 2 18
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

zn

Figure 21.12: Second bounce light can also create the caefééicts seen on the
ground. One path of length two is shown. From [2B]Springer.
Putting this together, we can write

L' = L4+ L'+ L2+L3+..
= L+ B+ L'+ L2+ L2+ ...
L¢ + BL!

This expresses an equation that must hold for the totalibguiin distributionL?.

At a surface point, this can be expanded out as

D@0 = L@+ [do faad5) L'(0,5) cos(t)
H

This last form is called the rendering equation. Note th¥aappears on both sides
of the equation, so it is not simply a definite integral, buarsntegral equation

21.4 Sensors

When we place a (virtual) camera in the scene, an image isieapof the light distri-
bution L, the total equilibrium distribution of light in the sceneorfa pinhole camera,

Foundations of 3D Computer Graphics 2 19
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

Figure 21.13: By computing multiple bounces, we can comhée&orrect distribution
of light and darkness in an environment. From [1BJACM.

we simply capture the incoming radiance at each pixel/sarimglation along the sin-
gle ray from the pixel towards the pinhole. In a physical cea{er simulation of one)

we need a finite aperture and finite shutter speed in ordeipinieaa finite amount of

photons at our sensor plane. See Figure 21.14. Given suchex@aave can model the
photon count at pixe(:, j) as

/Tdt /Q j dA /W dw F; ;(Z) L' (@, %) cos(6) (21.5)

whereT is the duration of the shutte®, ; is the spatial support of pix¢l, j)'s sensor,
andF; ; is the spatial sensitivity of pixdl, j) at the film pointz andW is the wedge
of vectors coming in from the aperture towards the film point.

To organize the light, a lens is placed in front of the aperturhe simplest lens
model is called th¢hin lensmodel. Its geometry is visualized in Figure 21.15. The
effect of this lens is to keep objects at a particular depin@in focus. Objects at other
depths appear blurred out, due to gfw operation.

We have already seen (Section 16.3) that, integration dnepixel area domain
produces anti-aliasing. Integration over the shuttertitmgroduces motion blur. See
Figure 21.16. Integration over the aperture produces faodslur effects, also called
depth of fieldeffects. See Figure 21.17.

Foundations of 3D Computer Graphics 220
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

Aperture

Pixel area € ;

Scene Geometry

Figure 21.14: In a camera, we must integrate over the ageaiha pixel footprint.

21.5 Integration Algorithms

As we have seen, starting froif, which is part of the scene definition, the com-
putation of reflected lightL!, and especially the total equilibrium distributiof?,
requires the computation of (nested) definite integralsrédeer, the computation of
each pixel value in our sensor requires its own integralsedk \mtegral computations
are typically approximated by turning them into sums ovensset of samples of the
integrand.

Much of the work in the photo-realistic rendering field isatout the best ways to
approximate these integrals. Key ideas for computing théfggently include:

e Use randomness to choose the samples [13]. This avoideabte patterns in
the errors during approximation. Using randomness, we lcangge expectation
arguments to argue about the correctness of the method.

e Reuse as much computation as possible [75, 29]. If we knowrthdiance
pattern at a point, perhaps we can share this data with neaibts.

e Do more work where it will have the most effect on the outpudr €&xample, it
may not be worth it to follow rays of light that don’t carry nmucadiance [71].

Possibly the most important lesson to keep in mind is thaktsea certain duality
at work here: one the one hand more integrals means more vigaukon the other
hand, each of the integrals is typically some kind of blugroperation. Thus, more
integrals means less accuracy is needed. For efficiencyhawddsnot spend too much
effort on computing details that will get blurred out and @eimpact the final image.
For example, we should typically spend more time on calmgdadirect illumination,
and less time on indirect lighting.

Foundations of 3D Computer Graphics 22 1
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

Focus Plane

Figure 21.15: Here we show the effect of placing a thin lerfsdnt of the aperture. It
has the effect of focusing rays at a preferred depth plangaBhin front of, or behind
this plane are out of focus and blurred.

21.6 More General Effects

There are other optical effects that we have not capturediirsimple model of light
and reflection. Atmospheric volumetric scattering occuremlight passes through
fog. Fluorescence occurs when surfaces absorb light aadriemit this energy out
(often at different wavelengths). Polarization and diffran effects can occasionally
be observed as well.

One interesting effect that turns out to be somewhat impoitasubsurface scat-
tering. In this case, light enters a material at one pointinges around inside of the
surface, and comes out over a finite region around the poiiwénce. This gives an
overall softening effect and can be important to properlgeisurfaces such as skin
and marble. See Figure 21.18.

Exercises

Ex. 55 — Given a diffuse wall with constant irradiance from the indnghemisphere
over all points, what is the distribution of outgoing radiaf?

Ex. 56 — If we observe the above wall with a finite sensor, and com@ié’, X),
how will the flux depend on the distance between the sensotteall. What about
its dependence on angle?

Foundations of 3D Computer Graphics 222
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

Figure 21.16: One of the first published images renderedyusis of rays per pixel.
From [13],©Pixar.

Ex. 57 — Starting with a ray tracer, use multiple rays to render depfield effects,
or soft shadows from area light sources.

Ex. 58 — Learn about and photon mapping. This is an algorithm whiahegggtes
photons at the light sources, and sends them out along raysghthe scene. The ab-
sorbed photons are stored itkétreespatial data structure and later used to determine
the colors of observed surface points.

Foundations of 3D Computer Graphics 223
S.J. Gortler

MIT Press, 2012

CHAPTER 21. LIGHT (TECHNICAL)

Figure 21.17: Integration over the lens creates focus esffécom [38],(©ACM.

Figure 21.18: From left to right more and more subsurfacttesgag is used. This can
give scale cues, making the rightmost figure look smallestimH31], ©ACM.

Foundations of 3D Computer Graphics 224
S.J. Gortler

MIT Press, 2012

