
Chapter 21

Light (technical)

In this chapter we will describe in more detail how light and reflections are properly
measured and represented. These concepts may not be necessary for doing casual com-
puter graphics, but they can become important in order to do high quality rendering.
Such high quality rendering is often done using stand alone software and does not use
the same rendering pipeline as OpenGL. We will cover some of this material, as it is
perhaps the most developed part of advanced computer graphics. This chapter will be
covering material at a more advanced level than the rest of this book. For an even more
detailed treatment of this material, see Jim Arvo’s PhD thesis [3] and Eric Veach’s PhD
thesis [71].

There are two steps needed to understand high quality light simulation. First of
all, one needs to understand the proper units needed to measure light and reflection.
This understanding directly leads to equations which modelhow light behaves in a
scene. Secondly, one needs algorithms that compute approximate solutions to these
equations. These algorithms make heavy use of the ray tracing infrastructure described
in Chapter 20. In this chapter we will focus on the more fundamental aspect of deriving
the appropriate equations, and only touch on the subsequentalgorithmic issues. For
more on such issues, the interested reader should see [71, 30].

Our basic mental model of light is that of “geometric optics”. We think of light as
a field of photons flying through space. In free space, each photon flies unmolested
in a straight line, and each moves at the same speed. When photons hit a surface,
they scatter in various directions from that point. We also assume that the field is in
equilibrium.

21.1 Units

If we want to carefully simulate realistic images, we first need to understand the units
used for measuring light. We will start this discussion withsome simple photon mea-
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Figure 21.1: A sensor counts the photons that pass throughX from incoming directions
within the wedgeW . This gives usΦ(W, X), a measurement called radiant flux.

surements. These will lead us to a very useful unit called radiance.

21.1.1 Radiant Flux

We can think of light as a bunch of photons flying through spacein various directions.
Imagine a “sensor”(W, X) out in space, whereX is a smooth imaginary reference
surface andW is awedgeof directions. In this sensor, we count the number of photons
that come in from any direction within the wedgeW and pass through the surfaceX .
There may be a physical surface of our scene coincident withX , or the imaginary
sensor may be sitting in free space. See Figure 21.1.

This sensor then counts the number of photons it receives each second. Each photon
carries energy measured in units ofjoules. By dividing the energy by time (measured
in seconds) we get a measurement called radiant flux, measured in watts. We use the
symbolΦ(W, X) to represent such a measurement.

Next, we assume (or verify by experiment) thatΦ(W, X) varies continuously as
we continuously alter the geometry of the sensor (translate, rotate, or change its size).
Given this assumption we are now in the position to define a slew of useful radiometric
measurements.

21.1.2 Irradiance

First, we want to define a measurement of light, say over a verysmall planar sensorX
with normal~n, that does not depend on the actual size of the sensorX . We can get
this by simply dividing our measured radiant flux by the area of the sensor (measured
in square meters). Doing this, we get a measurement

E(W, X) :=
Φ(W, X)

|X |

We can measureE(W, X) for smaller and smallerX around a single point̃x. Under
reasonable continuity assumptions aboutΦ, this ratio converges (almost everywhere)

Foundations of 3D Computer Graphics
S.J. Gortler

MIT Press, 2012

206



CHAPTER 21. LIGHT (TECHNICAL)

x̃̃xXX
lim�n�n

WW WW WW

Φ(W,X)
|X|

Φ(W,X)
|X| E�n(W, x̃)E�n(W, x̃)

Figure 21.2: We can divide radiant flux by|X |. In the limit, this becomes the pointwise
incoming irradiance measurementE~n(W, x̃).

to a value that we call an (incoming)irradiancemeasurement, and write asE~n(W, x̃).
See Figure 21.2. We need to keep around the~n parameter in order to specify the orien-
tation of the smaller and smaller sensors used in this measurement sequence. If we had
considered the same pointx̃ in space on a different surfaceX ′ with a different normal
~n′, we would obtain a different quantityE~n′(W, x̃). (Moreover, since the wedgeW is
finite, there is no easy way to relateE~n(W, x̃) to E~n′(W, x̃). Later on, when we define
a quantity called radiance, we will shrinkW down to a single vector. In that case, a
simple cosine factor will be able to relate measurements with different normals.)

Often, in the literature, the first argument forE is dropped from the notation, and
is inferred somehow from conventions and context. For example, in some contexts,
it may be clear thatW is the entire upper hemisphere above the point. Similarly, the
normal parameter is often dropped from the notation and inferred from context.

Suppose our finite sensor surfaceX is broken up into a bunch of smaller surfaces,
Xi. Then we can compute flux over the entire sensor as the sum

Φ(W, X) =
∑

i

Φ(W, Xi) =
∑

i

|Xi| E(W, Xi)

Likewise, under reasonable continuity assumptions aboutΦ, we can compute flux from
pointwise irradiance as

Φ(W, X) =

∫

X

dA E~n(x̃)(W, x̃)

Where
∫

X
is an integral over the surfaceX anddA is an area measure over the positions

x̃.

21.1.3 Radiance

We next want to define a measurement that does not depend on thesize ofW , and so
we want to divide out by|W |, the solid anglemeasure ofW . The solid angle of a
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Figure 21.3: We can divide an irradiance measurement by|W | to obtain a measurement
L~n(W, x̃) = E~n(W,x̃)

|W | . This converges toL~n(~w, x̃). By dividing out bycos(θ) we can
convert this toL−~w(~w, x̃). Dropping the subscript gives us the radiance measurement
L(~w, x̃) used for a ray.

wedge of directions from the origin is simply defined as the area covered by the wedge
on the unit sphere. These units are calledsteradians, where the wedge ofall directions
covers4π steradians.

We now define a new radiometric measurement by dividing irradiance by steradians

L~n(W, x̃) =
E~n(W, x̃)

|W |

We can measure this using smaller and smaller wedges around avector~w pointing
towardsx̃. Again, under reasonable continuity assumptions forΦ this converges (al-
most everywhere) to a measurement which we callL~n(~w, x̃), where~w is now a single
direction vector, and not a wedge. See Figure 21.3.

We can now drop the dependence on~n by converting our measurementL~n(~w, x̃)
to that ofL−~w(~w, x̃). In other words, we consider what the measurement would have
been had theX plane been perpendicular to the incoming beam. To do this, wehave
to account for the ratio between the areas of sensor surfacesas they are tilted. This can
be calculated as

L(~w, x̃) := L−~w(~w, x̃) =
L~n(~w, x̃)

cos(θ)

whereθ is the angle between~n and−~w. We now drop the normal parameter, writing
this simply asL(~w, x̃) instead ofL−~w(~w, x̃). We call this measurementincoming
radiance. See Figure 21.3. In summary

L(~w, x̃) :=
1

cos(θ)
lim

W→~w

1

|W |

(

lim
X→x̃

Φ(W, X)

|X |

)

(21.1)

Going the other way, given a spatially and angularly varyingL(~w, x̃), we can com-
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Figure 21.4: We can shift a sensor along a central direction~w. In the limit for small
wedges, they will be measuring mostly the same photons. Fromthis we can conclude
that radiance is constant along a ray.

pute the radiant flux over a large sensor(W, X) as

Φ(W, X) =

∫

X

dA

∫

W

dw L(~w, x̃) cos(θ)

wheredw is a differential measure of steradians. Radiance measurements allow us to
measure light at a point and direction without keeping trackof the size and orientation
of the measurement device. Moreover, even though our radiance notation includes a 3D
point, x̃, as one of its variables, in fact (see below for an argument),radiance remains
constant along a ray in free space. That is

L(~w, x̃) = L(~w, x̃ + ~w)

For a point on a surface, it is also useful to have a measurement L(x̃, ~w) of outgoing
radiancefrom the point̃x in the direction~w. (We reverse the order of the arguments to
L to distinguish incoming from outgoing radiance). We can define this as

L(x̃, ~w) :=
1

cos(θ)
lim

W→~w

1

|W |

(

lim
X→x̃

Φ(X, W )

|X |

)

whereΦ(X, W ) is the radiant flux of photonsleavinga finite surfaceX and going out
along vectors in the wedgeW (again, note the order of the arguments).

In free space, it is clear thatL(~w, x̃) = L(x̃, ~w).

Radiance is the most useful quantity needed for computational light simulation. In-
deed, we can go back to Chapters 14 and 20 and interpret those methods using these
units. For example, when we calculate the color of some 3D point x̃ in an OpenGL
fragment shader, we can interpret this as computing the outgoing radianceL(x̃, ~v),
where~v is the “view vector”. This outgoing radiance value is also the incoming radi-
ance value at the corresponding sample location on the imageplane, and is thus used
to color the pixel. Likewise, in ray tracing, when we trace a ray along the ray(x̃, ~d),
we can interpret this as calculating the incoming radiance value,L(−~d, x̃).

Constancy of Radiance Along a Ray (optional)

Suppose, in free space, that we slide our sensor(W, X) along the vector~w to obtain
the shifted sensor(W, X ′) whereX ′ = X + ~w. (See Figure 21.4). In this case our
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measured fluxes will not agreeΦ(W, X) 6= Φ(W, X ′). But if we compute radiance, in
the limit we will get agreement. In particular

L(~w, x̃) :=
1

cos(θ)
lim

W→~w

1

|W |

(

lim
X→x̃

Φ(W, X)

|X |

)

=
1

cos(θ)

(

lim
X→x̃

1

|X |
lim

W→~w

Φ(W, X)

|W |

)

=
1

cos(θ)

(

lim
X→x̃

1

|X |
lim

W→~w

Φ(W, X + ~w)

|W |

)

=
1

cos(θ)

(

lim
X′→x̃+~w

1

|X ′|
lim

W→~w

Φ(W, X ′)

|W |

)

=
1

cos(θ)
lim

W→~w

1

|W |

(

lim
X′→x̃+~w

Φ(W, X ′)

|X ′|

)

= L(~w, x̃ + ~w)

In the third line we use the fact that, in the limit for very small wedges, our sensor and
shifted sensor will be measuring the same set of photons, andthus

lim
W→~w

Φ(W, X ′)

Φ(W, X)
= 1

As a result of this we say that radiance is constant along a ray.

Fundamentally, we can think of this constancy as arising from the combination
of two facts. First, our physical assumptions imply that, infree space, the measured
flux, Φ, depends only on the set of directed lines that are measured,not where they
are measured. Secondly, for any set of lines, say calledS, if we parametrize the
lines by direction~w and by where they hit some planeX , then theline measurement:
∫

S
dw dAX cos(θ) will, in fact, not depend on the choice of planeX . Using this ter-

minology, radiance is simply thedensityof flux over the line measure, and the choice
of x̃ is not relevant.

21.2 Reflection

When light comes in fromW , a wedge of incoming directions about the vector~w,
and hits a point̃x on a physical surface, then some of that light can get reflected off
the surface. We make the simplifying approximation/assumption that all reflection is
pointwise, i.e., light hitting a point bounces out from thatsingle point only. Let us
measure the light that is reflected out alongV , some wedge of outgoing directions
around an outgoing vector~v. The particulars of this bouncing are governed by the
physical properties of the material. We wish to represent the behavior of this bouncing
with some functionf describing the ratio of incoming to outgoing light. What kind of
units should we use for this ratio? Our governing principle is that we wanta ratio that
convergesas we use smaller and smaller incoming and outgoing wedges. This implies
our second principle (that is desirable in and of itself): wewant a ratio that (for small
enough wedges)does not actually depend on the size of the wedges.
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Figure 21.5: A BRDF measures the ratio of incoming irradiance to outgoing radiance.

In this section, we will derive the primary way to describe reflection, called the
BRDF. For special materials, like pure mirrors and refractive media, we will use a
slightly different representation.

21.2.1 BRDF

We can verify experimentally that most materials (excluding pure mirrors or lenses, see
below) have the following diffusing behavior. For any fixed incoming light pattern, the
outgoing light measured along any outgoing wedge changes continuously as we rotate
this wedge. Thus if we double the size of a small outgoing measurement wedgeV , we
will see roughly twice the outgoing flux. Therefore, to set the numerator of our ratiof
in a way that does not depend on the size ofV , we should use units of radiance. Let us
call this outgoing measurement:L1(x̃, ~v). We place a superscript onL1 to make clear
that we are referring here to the measurement of bounced photons.

Similarly, (but possibly surprisingly) we can verify that,for most materials (again
mirrors and lenses excluded), if all of the light is coming infrom a single small wedge
W , and we double the width of this incoming wedge, the amount offlux reflected
along a fixed outgoing wedge, and thus the amount of radiance reflected along a fixed
outgoing direction, will roughly double as well. Thus, to get a ratio that does not
depend on the size of theW , we need the denominator to double in this case. We
accomplish this by measuring the incoming light in units of irradiance.

Putting this together, we see that we should measure reflection as

fx̃,~n(W,~v) =
L1(x̃, ~v)

Ee
~n(W, x̃)

=
L1(x̃, ~v)

Le
~n
(W, x̃)|W |

Where we use the superscriptLe to refer to photons that have beenemittedby some
light sources and have not yet bounced. Once again, by makingthe incoming wedge
smaller and smaller around a fixed~w, this quantity converges to a measurement denoted
fx̃,~n(~w,~v). This function,f , is called thebi-directional reflection distribution function,
or BRDF. It is a function that can vary with both incoming and outgoing directions. See
Figure 21.5.
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Figure 21.6: An array of BRDFs captured by a measuring device. From [47], c©ACM.

The simplest BRDF is the constant BRDFfx̃,~n(~w,~v) = 1. This represents the
behavior of a diffuse material. In this case, the outgoing radiance at a point does not
depend on~v at all. (Subtlety: this does not mean that incoming photons are scattered
equally in all outgoing directions. In fact, on a diffuse surface more of the photons are
scattered in the direction of the surface normal, and the amount of scattered photons
drops by a cosine factor to zero at grazing angles. In contrast, the outgoingradiance
does not depend on outgoing angle, since the definition of radiance includes its own
cosine factor which cancels this “drop-off” factor. Intuitively speaking, when looking
at a diffuse surface from a grazing angle, fewer photons are coming towards you per
unit of surface area, but your are also seeing more surface area through your sensor.)

More complicated BRDFs can be derived from a variety of methods.

• We can simply hack up some function that makes our materials look nice in
pictures. This is essentially what we did in Section 14.

• We can derive the BRDF function using various physical assumptions and statis-
tical analysis. This involves a deeper understanding of thephysics of light and
materials.

• We can build devices that actually measure the BRDF of real materials. This can
be stored in a big tabular form, or approximated using some functional form. See
Figure 21.6.

Suppose we want to compute the outgoingL1(x̃, ~v) at a point on a surface with
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Figure 21.7: To compute the outgoing reflected radiance,L1(x̃, ~v), the reflection equa-
tion integrates all of the incoming rays~w coming towards̃x.

normal~n, due to light coming in from the hemisphere,H abovex̃. And supposeH
is broken up into a set of finite wedgesWi. Then we can compute the reflected light
using the sum

L1(x̃, ~v) =
∑

i

|Wi| fx̃,~n(Wi, ~v) Le
~n(Wi, x̃)

Likewise, usingfx̃,~n(~w,~v) andLe(~w, x̃) we can compute the reflected light using
the integral:

L1(x̃, ~v) =

∫

H

dw fx̃,~n(~w,~v) Le
~n(~w, x̃) (21.2)

=

∫

H

dw fx̃,~n(~w,~v) Le(~w, x̃) cos(θ) (21.3)

This is called thereflection equation, and it is the basis for most of our models for light
simulation. See Figure 21.7.

21.2.2 Mirrors and Refraction

Pure mirror reflection and refraction are not easily modeledusing a BRDF representa-
tion. In a mirrored surface,L1(x̃, ~v), the bounced radiance along a ray, dependsonly
on Le(−B(~v), x̃), the incoming radiance along a single ray. HereB is the bounce
operator of Equation 14.1.

Doubling the size of an incoming wedge that includes−B(~v) has no effect on
L1(x̃, ~v). Thus, for mirror materials, we represent the reflection behavior as
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kx̃,~n(~v) =
L1(x̃, ~v)

Le(−B(~v), x̃)
(21.4)

wherekx̃,~n(~v) is some material coefficient. We replace the reflection equation with

L1(x̃, ~v) = kx̃,~n(~v) Le(−B(~v), x̃)

No integration is required in this case. For this reason, mirror reflection is easy to
calculate algorithmically, and easily done in a ray tracingprogram.

When light passes between mediums with different indices ofrefraction, such as
when light passes into or out of glass, the rays bend using an appropriate geometric
rule. Like mirror reflection, at the material interface, theradiance along each outgoing
light ray is affected by the radiance of a single incoming light ray. Once again, it is
easiest here to use “ratio of radiance” units, as in Equation(21.4).

21.3 Light Simulation

The reflection equation can be used in a nested fashion to describe how light bounces
around an environment multiple times. Such descriptions typically result in definite
integrals that need to be calculated. In practice, this computation is done by some sort
of discrete sampling over the integration domain.

In this section, we will start with the simple light simulation of our shading model
from Chapter 14 and then build up to more complicated models.

We use the symbolL with no arguments to represent the entire distribution of ra-
diance measurements in a scene due to a certain set of photons. Such anL includes all
incoming and outgoing measurements anywhere in the scene. We useLe to represent
unbounced (emitted) photons, andLi to represent the radiance of photons that have
bounced exactlyi times.

21.3.1 Direct Point Lights

In our basic OpenGL rendering model, our light comes not fromarea lights, but from
point lights. Such point lights do conform to our continuity assumptionsand are not
so easily represented with our units. In practice, for pointlights we simply replace the
reflection equation with

L1(x̃, ~v) = fx̃,~n(−~l, ~v) Ee
~n(H, x̃)

whereEe is the unbounced irradiance coming in tox̃ due to the point source and~l is
the “light vector” pointing fromx̃ to the light. We are free to calculateEe any way we
want. For example, in the real world, the irradiance at a point x̃ due to a very small
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Figure 21.8: Integration over area lights cause soft shadows. From [69], c©ACM.

spherical light source is proportional tocos(θ)
d2 , whered is the distance between the

light and the surface. This is because the solid angle of the small light source drops
off with 1

d2 . (On the other hand, this distance drop off term tends to makepictures too
dark and so is often not used). Also note that, in the languageof Section 14, we have
cos(θ) = ~n ·~l.

21.3.2 Direct Area Lights

Suppose our light sources have finite area, then we really do need the integral of the
reflection equation. In this case, the integrand overH in Equation (21.2) is only non-
zero for incoming directions~w that “see” the light.

If we approximate the integral using some finite number of incoming directions,~wi,
we can use a ray tracing approach to calculate theseLe(~wi, x̃) values. When random-
ness is used to select the directions, this is called distribution ray tracing [13]. As ray
intersection is an expensive operation, these integrals can be very expensive to compute
accurately.

When the light source is partially occluded by other geometry, this integration will
produce shadows that have soft boundaries. This happens because nearby points on
a light-receiving surface may see different amounts of the area light source. See Fig-
ure 21.8.
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Figure 21.9: To computeL2, we need two nested integrals. For each direction~w
coming intox̃, there we find the point̃x′ hit by the ray as shown. We then need to
integrate the hemisphere abovex̃′.

21.3.3 Two Bounces

We can computeL2, the light distribution of twice bounced photons, by using the
reflection equation, but replacing the “input”Le with L1.

L2(x̃, ~v) =

∫

H

dw fx̃,~n(~w,~v) cos(θ)L1(~w, x̃)

=

∫

H

dw fx̃,~n(~w,~v) cos(θ)

∫

H′

dw′ fx̃′,~n′(~w′, ~w) cos(θ′)Le(~w′, x̃′)

=

∫

H

dw

∫

H′

dw′ fx̃,~n(~w,~v) cos(θ) fx̃′,~n′(~w′, ~w) cos(θ′) Le(~w′, x̃′)

In this expression,̃x′ is the point first hit along the ray(x̃,−~w). At the intersection
point,~n′ is the normal,H ′ is the upper hemisphere and~w′ is an incoming direction,
making an angle ofθ′ with ~n′. See Figure 21.9.

Once computed, we can add togetherLe(x̃, ~v) + L1(x̃, ~v) + L2(x̃, ~v) and use this
as the point’s observed color at the image plane.

As suggested by the second line in the above equation, one wayto computeL2 is
by recursively evaluating these nested integrals using distribution ray tracing. That is,
an outer loop integrates the hemisphere abovex̃. For each sampled direction~w, we
hit some point,̃x′. We then use a recursive distribution ray tracing call to integrate the
hemisphere above it. See Figure 21.9.

Alternatively, as suggested by the third line in the above equation, there are also
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Figure 21.10: The integral that computesL2 can be thought of as summing over paths
of length two.

other ways to organize this integration. Let us denote byx̃′′ the point first hit along the
ray(x̃′,−~w′). Then, in the integral, each setting of the variables(~w, ~w′) corresponds to
ageometric path of length two: (x̃, x̃′, x̃′′). We can think of this integrand as calculating
the light emitted at̃x′′, reflected at̃x′, and then reflected at̃x out towards~v. As such,
it is often convenient to think of this not as a nested integral over two hemispheres, but
as an integral over an appropriate space of paths. This leadsto an integration algorithm
known as path tracing [71].

This second bounce lightL2 is less important than direct lighting, but it is needed to
properly simulate blurry reflections of the surrounding environment. See Figure 21.11.
It also produces the less visible effect called color bleeding (see again Figure 21.11).
Caustic effects can also be seen due toL2. In this case, light bounces off mirrored or
refracting objects and creates bright spots on diffuse surfaces. This light then bounces
off towards the eye. See Figure 21.12.

21.3.4 And So On

In the real world, light bounces around the environment manymany times. Thus, the
total observed lightLt is the sum of light that has come from emitters and bounced
any number of times.

Lt = Le + L1 + L2 + L3 + .....

Some light is absorbed at each bounce, making the higher bounce terms become small,
and the sum convergent.

Higher bounces account for the overall distributions of lightness and darkness in
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Figure 21.11: Second bounce lightL2 accounts for the blurry reflection in the glossy
floor of the sphere as well as the color bleeding from the wallsonto the ceiling. One
path of length two is shown. From [29],c©Springer.

the environment. See Figure 21.13. In most cases, this can bedone with low accuracy
and at a low spatial resolution.

In software rendering, such integrals can be computed usingsampling and sum-
ming. Successful methods here include distribution ray tracing [13], path tracing [71],
the “Radiance” algorithm [75] and photon mapping [30].

In OpenGL, most of these effects are simply hacked using a combination of mul-
tiple pass rendering and precomputed textures. One popularsuch technique is called
“ambient occlusion” [39].

21.3.5 The Rendering Equation (optional)

Instead of thinking ofLt as an infinite sum ofLi, we can also think ofLt as the
solution to the so-calledrendering equation. This point of view can ultimately lead to
other insights and algorithmic approaches to light simulation. We include it here, as it
is interesting in its own right.

Let us begin by writing the reflection equation in shorthand as

L1 = BLe

whereB is the bounce operator mapping light distributions to lightdistributions. More
generally, we can use the reflection equation and bounce operator to writeLi+1 = BLi.
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x̃′′x̃′′

x̃′

x̃̃x

Figure 21.12: Second bounce light can also create the caustic effects seen on the
ground. One path of length two is shown. From [29],c©Springer.

Putting this together, we can write

Lt = Le + L1 + L2 + L3 + .....

= Le + B(Le + L1 + L2 + L3 + .....)

= Le + BLt

This expresses an equation that must hold for the total equilibrium distributionLt.

At a surface point, this can be expanded out as

Lt(x̃, ~v) = Le(x̃, ~v) +

∫

H

dw fx̃,~n(~w,~v) Lt(~w, x̃) cos(θ)

This last form is called the rendering equation. Note thatLt appears on both sides
of the equation, so it is not simply a definite integral, but isan integral equation.

21.4 Sensors

When we place a (virtual) camera in the scene, an image is captured of the light distri-
butionLt, the total equilibrium distribution of light in the scene. For a pinhole camera,
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Figure 21.13: By computing multiple bounces, we can computethe correct distribution
of light and darkness in an environment. From [72],c©ACM.

we simply capture the incoming radiance at each pixel/sample location along the sin-
gle ray from the pixel towards the pinhole. In a physical camera (or simulation of one)
we need a finite aperture and finite shutter speed in order to capture a finite amount of
photons at our sensor plane. See Figure 21.14. Given such a camera, we can model the
photon count at pixel(i, j) as

∫

T

dt

∫

Ωi,j

dA

∫

W

dw Fi,j(x̃) Lt(~w, x̃) cos(θ) (21.5)

whereT is the duration of the shutter,Ωi,j is the spatial support of pixel(i, j)’s sensor,
andFi,j is the spatial sensitivity of pixel(i, j) at the film pointx̃ andW is the wedge
of vectors coming in from the aperture towards the film point.

To organize the light, a lens is placed in front of the aperture. The simplest lens
model is called thethin lensmodel. Its geometry is visualized in Figure 21.15. The
effect of this lens is to keep objects at a particular depth plane in focus. Objects at other
depths appear blurred out, due to the

∫

W
operation.

We have already seen (Section 16.3) that, integration over the pixel area domain
produces anti-aliasing. Integration over the shutter duration produces motion blur. See
Figure 21.16. Integration over the aperture produces focusand blur effects, also called
depth of fieldeffects. See Figure 21.17.
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Figure 21.14: In a camera, we must integrate over the aperture and pixel footprint.

21.5 Integration Algorithms

As we have seen, starting fromLe, which is part of the scene definition, the com-
putation of reflected light,L1, and especially the total equilibrium distribution,Lt,
requires the computation of (nested) definite integrals. Moreover, the computation of
each pixel value in our sensor requires its own integrals as well. Integral computations
are typically approximated by turning them into sums over some set of samples of the
integrand.

Much of the work in the photo-realistic rendering field is allabout the best ways to
approximate these integrals. Key ideas for computing theseefficiently include:

• Use randomness to choose the samples [13]. This avoids noticeable patterns in
the errors during approximation. Using randomness, we can also use expectation
arguments to argue about the correctness of the method.

• Reuse as much computation as possible [75, 29]. If we know theirradiance
pattern at a point, perhaps we can share this data with nearbypoints.

• Do more work where it will have the most effect on the output. For example, it
may not be worth it to follow rays of light that don’t carry much radiance [71].

Possibly the most important lesson to keep in mind is that there is a certain duality
at work here: one the one hand more integrals means more work.But on the other
hand, each of the integrals is typically some kind of blurring operation. Thus, more
integrals means less accuracy is needed. For efficiency, we should not spend too much
effort on computing details that will get blurred out and never impact the final image.
For example, we should typically spend more time on calculating direct illumination,
and less time on indirect lighting.
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Focus Plane

Figure 21.15: Here we show the effect of placing a thin lens infront of the aperture. It
has the effect of focusing rays at a preferred depth plane. Objects in front of, or behind
this plane are out of focus and blurred.

21.6 More General Effects

There are other optical effects that we have not captured in our simple model of light
and reflection. Atmospheric volumetric scattering occurs when light passes through
fog. Fluorescence occurs when surfaces absorb light and later re-emit this energy out
(often at different wavelengths). Polarization and diffraction effects can occasionally
be observed as well.

One interesting effect that turns out to be somewhat important is subsurface scat-
tering. In this case, light enters a material at one point, bounces around inside of the
surface, and comes out over a finite region around the point ofentrance. This gives an
overall softening effect and can be important to properly model surfaces such as skin
and marble. See Figure 21.18.

Exercises

Ex. 55 — Given a diffuse wall with constant irradiance from the incoming hemisphere
over all points, what is the distribution of outgoing radiance?

Ex. 56 — If we observe the above wall with a finite sensor, and computeΦ(W, X),
how will the flux depend on the distance between the sensor andthe wall. What about
its dependence on angle?
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Figure 21.16: One of the first published images rendered using lots of rays per pixel.
From [13], c©Pixar.

Ex. 57 — Starting with a ray tracer, use multiple rays to render depthof field effects,
or soft shadows from area light sources.

Ex. 58 — Learn about and photon mapping. This is an algorithm which generates
photons at the light sources, and sends them out along rays through the scene. The ab-
sorbed photons are stored in akd-treespatial data structure and later used to determine
the colors of observed surface points.
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Figure 21.17: Integration over the lens creates focus effects. From [38], c©ACM.

Figure 21.18: From left to right more and more subsurface scattering is used. This can
give scale cues, making the rightmost figure look smallest. From [31], c©ACM.
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