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ALGORITHMS FOR FINDING GLOBAL MINIMIZERS OF
IMAGE SEGMENTATION AND DENOISING MODELS*
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Abstract. We show how certain nonconvex optimization problems that arise in image processing
and computer vision can be restated as convex minimization problems. This allows, in particular,
the finding of global minimizers via standard convex minimization schemes.
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1. Introduction. Image denoising and segmentation are two related, funda-
mental problems of computer vision. The goal of denoising is to remove noise and/or
spurious details from a given, possibly corrupted, digital picture while maintaining
essential features such as edges. The goal of segmentation is to divide the image into
regions that belong to distinct objects in the depicted scene.

Approaches to denoising and segmentation based on the calculus of variations and
partial differential equations (PDEs) have had great success. One important reason
for their success is that these models are particularly well suited to imposing geometric
constraints (such as regularity) on the solutions sought. Among the best known and
most influential examples are the Rudin—Osher—Fatemi (ROF) total variation—based
image denoising model [22] and the Mumford—Shah image segmentation model [17].

Denoising models such as the ROF model can be easily adapted to different
situations. An interesting scenario is the denoising of shapes: Here, the given image
is binary (representing the characteristic function of the given shape), and the noise is
in the geometry of the shape: Its boundary might be very rough, and the user might
be interested in smoothing out its boundary, and perhaps removing small, unnecessary
connected components of the shape. This task is a common first step in many object
detection and recognition algorithms.

A common difficulty with many variational image processing models is that the
energy functional to be minimized has local minima (which are not global minima).
This is a much more serious drawback than nonuniqueness of global minimizers (which
is also a common phenomenon) because local minima of segmentation and denoising
models often have completely wrong levels of detail and scale: whereas global min-
imizers of a given model are usually all reasonable solutions, the local minima tend
to be blatantly false. Many solution techniques for variational models are based on
gradient descent, and are therefore prone to getting stuck in such local minima. This
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makes the initial guess for gradient descent—based algorithms sometimes critically
important for obtaining satisfactory results.

In this paper we propose algorithms which are guaranteed to find global min-
imizers of certain denoising and segmentation models that are known to have local
minima. As a common feature, the models we consider involve minimizing functionals
over characteristic functions of sets, which is a nonconvex collection; this feature is
responsible for the presence of local minima. Our approach, which is based on ob-
servations of Strang in [23, 24], is to extend the functionals and their minimization
to all functions in such a way that the minimizers of the extended functionals can be
subsequently transformed into minimizers for the original models by simple thresh-
olding. This allows, among other things, computing global minimizers for the original
nonconvex variational models by carrying out standard convex minimization schemes.

Our first example is binary image denoising, which we briefly discuss as a precursor
to and a motivation for the more general segmentation problem that we subsequently
consider. Here the given noisy image for the ROF model is taken to be binary, and
the solution is also sought among binary images. This problem has many applications
where smoothing of geometric shapes is relevant. Some examples are the denoising of
fax documents, and the fairing of surfaces in computer graphics. Because the space of
binary functions is nonconvex, the minimization problem involved is actually harder
than minimizing the original ROF model. In section 2, we recall results from [6] that
show how this model can be written as a convex optimization problem, and we exhibit
its use as a numerical algorithm. In this section, we also analytically verify that the
energy concerned possesses local minimizers that are not global minimizers, which
can trap standard minimization procedures.

In section 3, we extend some of the results of [6] to the more important problem
of image segmentation. In particular, we consider the two-phase, piecewise constant
Mumford-Shah segmentation functional proposed by Chan and Vese in [7] and show
that part of the minimization involved can be given a convex formulation. This model
has become a very popular tool in segmentation and related image processing tasks
(also see [26] for its multiphase version). The convex formulation we obtain turns
out to be closely related to the algorithm of Chan and Vese presented in [7]. Our
observations indicate why this algorithm is successful in finding interior contours and
other hard-to-get features in images.

2. Previous work. The results and the approach of this paper follow very
closely the observations of Strang in [23, 24]. In those papers, optimization prob-
lems of the following form, among others, are studied:

(1) inf /|Vu|7

{u:f fudx=1}
where f(x) is a given function. It is shown in particular that the minimizers of (1)
turn out to be characteristic functions of sets. The main idea involved is to express
the functional to be minimized and the constraint in terms of the super level sets of
the functions u(z) and f(x). The coarea formula of Fleming, Rishel, and Rishel [11]
is the primary tool.

In this paper, the idea of expressing functionals in terms of level sets is applied to
some simple image processing models. For instance, in section 4, where we study the
piecewise constant Mumford—Shah energy, we show that the relevant energy, which is
originally formulated in terms of sets, can be reformulated as an optimization problem
over functions in such a way that the resulting conver energy turns out to be almost
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the same as (1). After this reformulation, following Strang’s work, we are also able
to express the resulting convex variational problem in terms of super level sets of the
unknown functions. That in turn allows us to extract a minimizer of the original
nonconvex model from a minimizer of the convex functional by simple thresholding.

We should point out that our emphasis in this paper is in some sense opposite that
of [23, 24]. Indeed, in those works the main point is that some energies of interest that
need to be minimized over all functions turn out to have minimizers that take only
two values. In our case, we start with a variational problem that is to be minimized
over only functions that take two values (i.e., characteristic functions of sets) but show
that we may instead minimize over all functions (that are allowed to take intermediate
vales), i.e., we may ignore the nonconvex constraint. This allows us to end up with a
convex formulation of the original nonconvex problem.

3. The ROF model. Rudin, Osher, and Fatemi’s total variation image denois-
ing model [22] is one of the best known and successful of PDE-based image denoising
models. Indeed, being convex it is one of the simplest denoising techniques that has
the all-important edge preserving property.

Let D C RY denote the image domain. In practice, D is simply a rectangle,
modeling the computer screen. Therefore, mathematically, it is natural to assume
that D is a bounded domain with Lipschitz boundary. However, for the convenience
of not dealing with boundaries, in this section we will take D to be the entire space
RY. This simplifying assumption has no bearing on the essential ideas discussed
below.

Let f(z) : RY — [0,1] denote the given (grayscale) possibly corrupted (noisy)
image. The energy to be minimized in the standard ROF model is then given by

@) Ez(u,x)szN V| + A (u(x)—f(:n))2dx.

RN

The appropriate value of the parameter A > 0 in the model (2) can be determined
if the noise level is known; an algorithm for doing so is given in [22]. If information
about noise level is not available, then A\ needs to be chosen by the user. This choice
can be facilitated by the observation that A acts as a scale parameter [25]: Its value
determines in some sense the smallest image feature that will be maintained in the
reconstructed image. Energy (2) is often minimized via gradient descent; however,
see [5, 9] for an alternative approach in the A = 0 case.

An interesting application of the ROF model described above is to binary image
denoising. This situation arises when the given image f(x) is binary (i.e., f(x) € {0,1}
for all z € R™) and is known to be the corrupted version of another binary image
u: RN — {0,1} that needs to be estimated. Naturally, f(z) can then be expressed
as

f(z) = 1qa(2),

where (2 is an arbitrary bounded measurable subset of RY. In this case, the noise is
in the geometry; for example, the boundary 92 of {2 might have spurious oscillations,
or 2 might have small connected components (due to presence of noise) that need
to be eliminated. The ROF model (2) can easily be specialized to this scenario by
restricting the unknown u(z) to have the form u(x) = 1s(x), where ¥ is a subset of
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R”. One then obtains the following optimization problem:

() i, /RN |Vu|+/\/RN (u(x)—lg(x))zdx.

u(z)=1x(x)

Problem (3) is nonconvex because the minimization is carried out over a nonconvex
set of functions. Recalling that the total variation of the characteristic function of
a set is its perimeter (see, e.g., [10, 12] for such basic facts), and noticing that the
fidelity term in this case simplifies, we write (3) as the following geometry problem:

(4) min Per(X) + A|X A Q]
YCRNV
where Per(-) denotes the perimeter, | -| is the N-dimensional Lebesgue measure, and

S1 A Sy denotes the symmetric difference between the two sets S; and Ss.

Usual techniques for approximating the solution. A very successful method
of solving problems of the type (4) has been via some curve evolution process, some-
times referred to as active contours. Indeed, the unknown set ¥ can be described by
its boundary 0¥. The boundary 9% is then updated iteratively, usually according to
gradient flow for the energy involved.

Numerically, there are several ways of representing 9%. For the applications
mentioned above, explicit curve representations as in Kass, Witkin, and Terzopoulos
[15] are not appropriate, since such methods do not allow changes in curve topology
(and have a number of other drawbacks). Instead, the most successful algorithms are
those based on either the level set method of Osher and Sethian [21, 20] or on the
variational approximation approach known as Gamma convergence theory [8].

In the level set formulation, the unknown boundary 93 is represented as the
0-level set of a (Lipschitz) function ¢ : RN — R:

Y ={zeR" :¢(z) >0},

so that 9 = {z € R" : ¢(z) = 0}. The functional to be minimized in (3), which we
called Es(-,\), can then be expressed in terms of the function ¢(z) as follows:

6 | wHG@) A [ () - 10@) d

RN

Here, the function H(z) : R — R is the Heaviside function:
0 ifz<0,
H(f)_{ 1 ifz>0.

In practice, one takes a smooth (or at least Lipschitz) approximation to H (z), which
we shall call H.(§), where H.(§) — H(&) in some manner as € — 0.

The Euler-Lagrange equation for (5) is easy to obtain. It leads to the following
gradient flow:

. [V
0 on(o.t) = 1220) {an (22) + 22 (1000 - .0)) .
When (6) is simulated using reinitialization for the level set function ¢(z) and a com-
pactly supported approximation H.(z) to H(z), it is observed to define a continuous
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evolution (with respect to, say, the L!-norm) for the unknown function u(z) = 1x(z)
and decreases the objective energy (3) through binary images. It is analogous to the
gradient descent equation in [7], which is natural since (3) is the restriction to binary
images of also the energy considered in that work, namely, the two-phase, piecewise
constant Mumford—Shah segmentation energy. In section 4, we will consider this
energy for general (not necessarily binary) images.

Another representation technique for the unknown set ¥ in (4) is, as we men-
tioned, based on the Gamma convergence ideas. Here, the given energy is replaced
by a sequence of approximate energies with a small parameter € > 0 in them. The
sequence converges to the original energy as ¢ — 0. The approximations have the
form

BN = [ eVl W+l e = )" 4 (0 (e )

In this energy, W () is a double-well potential with equidepth wells at 0 and 1; for
instance, a simple choice is W(§) = £2(1 — €)?. The term LW (u) can be thought of
as a penalty term that forces the function u to look like the characteristic function
of a set: u is forced to be approximately 0 or 1 on most of RY. The term e|Vul?,
on the other hand, puts a penalty on the transitions of u between 0 and 1. Taken
together, it turns out that these terms both impose the constraint that uw should be a
characteristic function and approximate its total variation. Precise versions of these
statements have been proved in [16]. The remaining terms in E. are simply the fidelity
term written in terms of u. This approach was extended to the full Mumford-Shah
functional in [4].

We now argue, with the help of a very simple example, that these techniques will
get stuck in local minima in general, possibly leading to resultant images with the
wrong level of detail. This fact is already quite familiar to researchers working with
these techniques from practical numerical experience.

Ezxample. Consider the two-dimensional case, where the observed binary image
f(z) to be denoised is the characteristic function of a ball Br(0) of radius R, which
is centered at the origin. In other words, we take 2 = Br(0). Implementing the
gradient descent algorithm defined by (6) requires the choice of an initial guess for
the interface ¢(z) (or, equivalently, an initial guess for the set 3 that is represented
by ¢(x)). A common choice in practical applications is to take the observed image
itself as the initial guess. In our case, that means initially we set ¥ = Br(0).

Now, one can see without much trouble that the evolution defined by (6) will
maintain radial symmetry of ¢(x). That means, at any given time ¢ > 0, the set (i.e.,
the candidate for minimization) represented by ¢(z) is of the form

{:v eR?: ¢(z) > o} = B,(0)

for some choice of the radius r > 0. We can write the energy of u(z) = 1 (o)(z) in
terms of r, as follows:

E(r) :== Es(1p,(0)(2),\) = 27r + Ar|R® — r?|.

A simple calculation shows that if A\ < %, then the minimum of this function is at

r = 0. Hence, if we fix A > 0, then the denoising model prefers to remove disks of

radius smaller than the critical value %.
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Energy of 1 (U)(x) vs. r

20 T

Fic. 1. Energy (3) of u(z) = 1p,.(0)(x) as a function of r € [0,2] when the observed image is

given by f(x) = 1g,o)(z). Here, R = % and the parameter X\ was chosen to be A = 1. There is

clearly a local minimum, corresponding tor = R = %

But now, once again an easy calculation shows that if R > %, then E(r) has a
local maximum at rp,4,(A) = % See Figure 1 for the plot of E(r) in such a case.
Thus the energy minimization procedure described by (6) cannot shrink disks of radius
Re (%, %) to a point, even though the global minimum of the energy for an original
image given by such a disk is at u(z) = 0.

We can easily say a bit more: There exists § > 0 such that if ¥ c R satisfies
|X A Br(0)] < 6, then Ex(1s(x),A) > E2(1p,0)(7),)). In other words, all binary
images close to, but not identical with, the observed image 1z, (o) (x) have strictly
higher energy. This can be seen simply by noting that the energy of any region that
is not a disk is strictly larger than the energy of the disk having the same area as the
given region and its center at the origin.

To summarize: If f(z) = lp,)(x) with R € (5, %), and if the initial guess
for the continuous curve evolution-based minimization procedure (6) is taken to be
the observed image f(z) itself, then the procedure gets stuck in the local minimizer
u(z) = f(z). The unique global minimizer is actually u(z) = 0.

Our example highlights the following caveat of using continuous curve evolution—
based gradient descent algorithms in practice: There are many situations in which
the user should be able to choose the value of A\ that appears in the model in such a
way that all image features smaller than the one implied by this choice of parameter
are eliminated from the final result. (Such a need might arise, for instance, in the
denoising of printed text, where the noise can consist of small ink blots.) With con-
tinuous curve evolution techniques, whether this goal will be achieved depends on the
initial guess (our example above exhibits an unfortunate initial guess). It is clearly of
interest to find an algorithm that does not have this dependence on initial conditions.

Proposed method for finding the global minimum. We now turn to an
alternative way of carrying out the constrained, nonconvex minimization problem (3)
that is guaranteed to yield a global minimum.
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The crux of our approach is to consider minimization of the following convex
energy, defined for any given observed image f(x) € L'(RY) and A > 0:

(7) By (u(z), \) = /R Va4 A /R Ju(e) — ()] dr.

This energy differs from the standard ROF model only in the fidelity term: The L2-
norm square of the original model is replaced by the L'-norm as a measure of fidelity.
It was previously introduced and studied in signal and image processing applications
in [1, 2, 3, 18, 19, 6]. This variant of the ROF model has many interesting properties
and uses; the point we’d like to make in this section is that it also turns out to solve
our geometry denoising problem (4).

First, let us state the obvious fact that energies (2) and (7) agree on binary
images (i.e., when both w and f are characteristic functions of sets). On the other
hand, energy (7) is convex, but unlike energy (2), it is not strictly so. Accordingly, its
global minimizers are not unique in general. Nevertheless, being convex, it does not
have any local minima that are not global minima, unlike the constrained minimization
(3). We therefore adopt the following notation: For any A > 0, we let M (\) denote
the set of all minimizers of Ey(-,\). It is easy to show that for each A > 0 the set
M (A) is nonempty, closed, and convex.

The relevance of energy (7) for our purposes is established in Theorem 5.2 of
[6], where additional geometric properties of it are noted. The proof is based on the
following proposition, taken from [6], that expresses energy (7) in terms of the super
level sets of u and f.

PROPOSITION 1. The energy Eq1(u, \) can be rewritten as follows:

(o)
(8) Eq(u,\) = / Per({z : u(z) > p}) + )\‘{x cu(z) > pk A {x: f(x) > p}| du.
— 00

Proof. The proof can be found in [6] (Proposition 5.1). O

We now recall also Theorem 5.2 of [6].

THEOREM 1. If the observed image f(x) is the characteristic function of a
bounded domain Q@ C RN, then for any A\ > 0 there is a minimizer of Ey(-,\) that is
also the characteristic function of a (possibly different) domain. In other words, when
the observed image is binary, then for each X\ > 0 there is at least one u(x) € M(X)
which is also binary.

In fact, if ux(z) € M(X) is any minimizer of E1(-,\), then for almost every
v € [0,1] we have that the binary function

1{ac:uA >} (‘r)

is also a minimizer of E1(-, \).
Proof. The proof can be found in [6] (Theorem 5.2). O
The proposition and its consequence, the theorem cited above from [6] (which
are related to observations in [23, 24]), lead to a guaranteed algorithm for solving the
binary image denoising problem (3), which we now state.
ALGORITHM 1. To find a solution (i.e., a global minimizer) u(x) of the nonconvex
variational problem (3), it is sufficient to carry out the following three steps:
1. Find any minimizer of the convex energy (7); call it v(x).
2. Let ¥ = {x € RN 1 v(z) > p} for some p € (0,1).
3. Set u(z) = 1x(x).
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F1G. 2. Original noisy binary image used in the numerical experiment of section 3.

Then u(x) is a global minimizer of (3) for almost every choice of .

Algorithm 1 reduces the shape optimization problem (4) to the image denoising
problem (7). In section 4, we will obtain the analogue of Proposition 1 for the piece-
wise constant Mumford—Shah segmentation model of Chan and Vese, which will lead
to a guaranteed algorithm for finding global minimizers of the more general shape
optimization problem involved in that model, just like Algorithm 1 did for model (3);
this is the content of Theorem 2 in that section. Our convex formulation will once
again reduce the Chan—Vese shape optimization to a variant of the image denoising
model (7).

The most involved step in the solution procedure described in Algorithm 1 is
finding a minimizer of (7). One can approach this problem in many ways; for instance,
one possibility is to simply carry out gradient descent.

Numerical example. The synthetic image of Figure 2 represents the given
binary image f(x), which is a simple geometric shape covered with random (binary)
noise. The initial guess was an image composed of all 1’s (an all white image).
In the computation, the parameter A was chosen to be quite moderate, so that in
particular the small circular holes in the shape should be removed while the larger
one should be kept. The result of the minimization is shown in Figure 3; in this case
the minimizer is automatically very close to being binary, and hence the thresholding
step of Algorithm 1 is almost unnecessary.

Figure 4 shows the histograms of intermediate steps during the gradient descent
based minimization. As can be seen, the intermediate steps themselves are very far
from being binary. The histogram in the lower right-hand corner belongs to the final
result shown in Figure 3. Thus the gradient flow goes through nonbinary images, but
in the end reaches another binary one. Although this is not implied by Proposition 1,
Theorem 1, or Algorithm 1, it seems to hold in practice.

4. Piecewise constant segmentation. In this section, we extend the discus-
sion of section 3 to the two-phase, piecewise constant Mumford—Shah segmentation
model [17] of Chan and Vese [7]. Unlike in the previous section, this time we let
the corrupted image f(x) be nonbinary: it is merely assumed to be some measurable
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Fi1a. 3. Final result found using the algorithm proposed in section 3, by minimizing (7). Algo-
rithm 1 says that global minimizers of the binary image denoising problem can be obtained by simply
thresholding this result. In this case, the minimizer of energy (7) turns out to be very close to being
binary itself, so there is no need to threshold. In the experiment, the value of A was chosen small
enough so that small holes in the original shape should get filled in, but also large enough so that
the large hole in the middle should be maintained.
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F1a. 4. Histograms for intermediate images as the gradient descent proceeds. As can be seen,
the intermediate images themselves are not binary; however, by the time the evolution reaches steady
state, we are back to a binary image.
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function that takes its values in the unit interval. Thus, the discussion of this section
supersedes that of the previous. Also, from now on we will assume that the image
domain D is a bounded subset of RY with Lipschitz boundary. The segmentation
energy, which we will call M S, can then be written as

(9) MS(Z,cq,¢2) :=Per(%; D) + /\/2(01 — f(z)*dx + X D\E(CQ — f(z))? de.

The model says we should solve

(10) min_ M S(X, ¢, c2).
c1,c2€R
=CD

This optimization problem can be interpreted to be looking for the best approximation
in the L? sense to the given image f(z) among all functions that take only two values.
These values, denoted ¢y, ¢, and where each is taken, namely, ¥ and D \ X, are
unknowns of the problem. As before, there is a penalty on the geometric complexity
of the interface J% that separates the regions where the two values ¢; and co are
taken. Functional (9) is nonconvex and can have more than one minimizer. Existence
of at least one minimizer follows easily from standard arguments. Notice that if 3 is
fixed, the values of ¢; and ¢ that minimize M S(X, -, -) read

1
~ID\El s

A natural way to approximate the solution is a two-step scheme where in the first
step one computes c¢; and cy according to these formulae, and in the second step
updates the shape ¥. Even the minimization of MS(-,¢1,c2) is a difficult problem
since this functional is nonconvex. In what follows we focus on the minimization of
MS(',Cl,CQ).

We point out that if the two constants ¢; and ¢y are fixed to be 1 and 0, respec-
tively, and if the given image f(z) in (9) is taken to be the characteristic function
1o(z) of a set 2, then the minimization problem (10) reduces to the geometry problem
(4); it is in this sense that this section’s problem is a generalization of the previous
section’s.

1
(11) Cl—|z|/2f(x)d$ and  co f(x)dx.

Chan—Vese algorithm. In [7] Chan and Vese proposed a level set-based algo-
rithm for solving the optimization problem (10). The idea is to represent the boundary
0% with the 0-level set of the function ¢ : D — RY. Energy (9) can then be written
in terms of the level set function ¢; it turns out to be

(12) V(b cr ca) = /D VH.(6)]

+ /\/D He(¢)(c1 — f(2))* + (1 = He(¢))(c2 — f(2))* da.

The function H. is, as before, a regularization of the Heaviside function. The pre-
cise choice of the regularization H. of H is a crucial ingredient of the Chan—Vese
algorithm. We will return to this topic.
Variations of energy (12) with respect to the level set function ¢ lead to the
following gradient descent scheme:
Vo

o= o) faiv (T5) = A (= 1) = (2 = F)P) }.
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The optimal choice for the constants ¢y, cs is easily determined in terms of the function
o.

The proposed algorithm. The Chan—Vese algorithm chooses a noncompactly
supported, smooth approximation H, for H. As a result, the gradient descent equation
given above and the following one have the same stationary solutions:

. V¢
o= aiv () = Al = 1@ = (2 = F(@)).
IVl
where we simply omitted the approximate Heaviside function altogether. This equa-
tion, in turn, is gradient descent for the following energy:

(13) /D V6] + A /D (1 — F(@))* — (2 — f(2))?) b

This energy is homogeneous of degree 1 in ¢. As a result, it does not have a
minimizer in general. In other words, the gradient descent written above does not
have a stationary state: If the evolution is carried out for a long time, the level
set function ¢ would tend to 400 wherever it is positive, and to —oco wherever it is
negative. This issue is related to the nonuniqueness of representation with level sets
and is easy to fix: one can simply restrict minimization to ¢ such that 0 < ¢(z) <1
for all x € D. With this fix, and following [23, 24], we arrive at the statement below.

THEOREM 2. For any given fized c1,ca € R, a global minimizer for MS(-,c1,ca)
can be found by carrying out the following conver minimization:

min /D [Vu| + )\/D {(cl — f(®)? = (c2 — f(x))2}u(x) dx

0<u<1

:=FE(u,c1,c2)

and then setting ¥ = {z : u(x) > p} for a.e. p €1[0,1].
Proof. We once again rely on the coarea formula; since u takes its values in [0, 1],
we have

1
0

/D |Vl =/ Per({z : u(xz) > u}; D) du.

For the other terms that constitute the fidelity term, we proceed as follows:
1
[ s = [ @ - 12 [ o) duds
D D 0
1
=/ /D(Cl — F(®))* 10,02y (1) de dp
0

1
- (1 — ()2 dodp
0 JDn{z:u(z)>u}

Also, we have

[ (@ = s@yuie) o= | 1 /| o (e (@)

1
—c- [ ] (c2 — $(2))? dodp,
0 JDN{z:u(z)>u}c
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where C' = [ (ca — f)?dx is independent of u. Putting it all together, and setting
Y(u) := {2z : u(x) > u), we get the following formula that is valid for any u(z) € L?(D)
such that 0 < u(x) <1 for a.e. z € D:

E(u,c1,c0) = /0 {Per(Z(,u);D)—l—)\/Z( )(cl — f(x))*dx

+)\/ (cz—f(x))Qdm} du—C
DA\Z(p)

1
/ MS(E(;L), c1, CQ) du — C.
0

It follows that if u(z) is a minimizer of the convex problem, then for a.e. pu € [0,1]
the set X(u) has to be a minimizer of the original functional M S(-,¢q, ¢a). 0

Remark. The optimization problem that forms the content of Theorem 2 can be
interpreted as follows: The level set formulation of the two-phase model depends on
the level set function ¢ only through the term H(¢). The term H(¢) represents a
parametrization of binary functions (since, for any given function ¢, the function H (¢)
is binary). So the minimization of (12) is thus a minimization over binary functions.
Minimization of (13), on the other hand, corresponds to removing the nonconvex
constraint of being binary; instead we minimize over functions that are allowed to
take intermediate values. The content of the theorem above is that the minimizers
(essentially) automatically satisfy the more stringent constraint.

We now turn to the question of how to minimize the convex problem stated in
the theorem. In that connection, we have the following claim.

CLAM 1. Let s(x) € L>°(D). Then the convex, constrained minimization problem

Inm / |Vu|+)\/ s(x)udz

has the same set of minimizers as the following convex, unconstrained minimization
problem:

min/ |Vu|—|—/ av(u) + As(x)udx,
“ JD D

where v(£) == max{0,2|¢ — | — 1}, provided that o > 3 ||s(z)| L (p)-

Proof. The term av(u) that appears in the second, unconstrained minimization
problem given in the claim is an ezact penalty term [13, 14]; see Figure 5 for a plot
of its graph. Indeed, the two energies agree for {u € L>*(D) : 0 < u(z) <1 Vz}. So
we only need to show that any minimizer of the unconstrained problem automatically
satisfies the constraint 0 < u < 1. This is immediate: If & > 3||s()| L, then

[As(z)| max{|u(x)|, |u(x) — 1|} < av(u(z)) whenever u(z) € [0, 1]¢,

which means that the transformation v — min{max{0,u}, 1} always decreases the
energy of the unconstrained problem (strictly if u(z) € [0,1]¢ on a set of positive
measure). That leads to the desired conclusion. O

Numerical examples. Here we detail how we obtained the numerical results
pertaining to the two-phase piecewise constant segmentation models that are pre-
sented in this paper. Given c1,co, the “exact penalty” formulation of the equivalent
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Fic. 5. The function v(§) is used for eract penalization as a method to impose the constraint

0 <wu <1 in the minimization of Claim 1.

minimization problem described above leads to the following Euler-Lagrange equa-
tion:

where s(z) = (c1 — f(2))? — (ca — f(z))?. The following explicit gradient descent
scheme was used to solve the last equation:

u7L+1 —um D+un
T

(14 ————— =D,
V(DFur)? + (DFur)? + &

ot 3”

+,n
Dyu

DFur)? 4+ (Dfum)? + 2,

+Dy = As(z) — ar, (u"),

where e€1,e2 > 0 are small constants, and v, () is a regularized version of v(§) that
smooths the latter’s kinks at 0 and 1.

The image shown in the Figure 6 is not piecewise constant with two regions; in
fact it is not very well approximated by any image that takes only two values. This
makes it a challenging test case for the two-phase segmentation problem (images that
are already approximately two-valued are easily and very quickly segmented by these
algorithms, and thus are easier examples).

Figure 7 shows the result found (i.e., the function u) using (14) to update the
unknown function u(z) that represents the two phases, when the given image f(z)
is the one shown in Figure 6. The two constants ¢; and co were initially chosen to
be 1 and 0, and updated occasionally according to (11); they eventually converged
to 0.4666 and 0.0605, respectively. Although the considerations above (in particular,
Theorem 2) do not imply that the minimizers of the objective functional turn out
to be binary themselves (which would make the thresholding step in the algorithm
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Fi1G. 6. The given image f(x) used in the two-phase segmentation numerical results discussed
in section 4.

50

150

200 -

250

I I I I
50 100 150 200 250

Fic. 7. The solution u(z) obtained by the numerical scheme of section 4. Although our claims
do not imply the solution itself turns out to be binary, this seems to be always the case in practice.
As can be seen, the computed solution is very close to being binary.

of Theorem 2 unnecessary), in practice they seem to. Indeed, the image of Figure 7
is very close to being binary. Furthermore, it gets even closer to being binary if the
computation is repeated using smaller values of the regularization parameters e; and
€9 that appear in scheme (14). On the other hand, it might be possible to cook up
special given images f and special values A for which there are nonbinary minimizers;
for instance, in the case of the convex formulation (7) of the related geometry problem
(4), the simple example of a disk as the given shape leads to nonbinary solutions for
a specific choice of the parameter A, as shown in [6].

Figure 8 displays the histograms of u(x) at intermediate stages of the gradient
descent computation. During the evolution, the function u certainly takes a contin-
uum of values; however, as the steady state approaches, the values that u can take
accumulate at the extreme ends of its allowed range. In this case, the extreme values
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Fic. 8. Histograms of intermediate solutions u™(x) of the flow in (14), for the example of
Figures 6 and 7.

seem to be about 0.04 at the low end and 0.97 at the high end. They are not 0 and
1 because the exact penalty function v that appears in (14) is regularized.

The theory above says that for fixed ¢; and cs, all level sets of the function u(z)
are minimizers. The table below shows the value of energy (9) computed by taking
Y = {z : u(x) = p} for several different values of p, where u(z) is the numerical
example of Figures 6, 7, and 8, and the constants ¢; and ¢y have the values quoted
above.

“w Energy
0.2 | 17.7055
0.4 | 17.6458
0.5 | 17.6696
0.6 | 17.6655
0.8 | 17.6740

For comparison, we note that the energy of a disk centered at the middle of the image
with radius a quarter of a side of the image domain has energy of about 112. Thus,
even though there is some minor variation among different level sets of the function
u(z) (see Figure 9 for a plot of several level contours) and their corresponding energies
(due to some of the approximations, such as in the penalty function p, that were made
to get a practical numerical algorithm), the difference in energy between them is quite
small; they are all almost minimizers.

Acknowledgment. The authors would like to thank Prof. Robert V. Kohn, from
whom they learned the observations of Strang in [23, 24].
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Fic. 9. Plot of several level contours of the solution obtained. They are all very close to each
other.
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