Chapter 19

Color

In this section, we will explore the basic concept of coloe Will talk about what color

is, and various ways to represent it. This is a rich topic oflgt and many mysteries
about human color perception remain unanswered. We wilhdgtra time on this

subject, as we find it very interesting, and due to its impar¢anot just to computer
graphics but to digital imaging as well.

Color is, in fact, an overloaded term meaning many diffetbimgs. When a light
beam hits the retina, there is some initial neural respopsbdcone-cellghat occurs
independently at each cell. We can refer to thisedimal color. Retinal color is then
processed in an integrated fashion over the entire fieldesf vésulting in th@erceived
color that we actually experience and base judgments upon. Tleiped color is
often associated with the object we are observing, which wgé@icall theobject color

At all of these stages, the simplest thing we can say aboupawticular colors is
simply whether they are the same or different. This is somgtthat we can often
record and quantify, and it is the main way we will deal witHozdn this chapter.
At the perceptual color level, there is clearly a conscioyseéence of color which is
much harder to deal with experimentally or formally.

Finally, there are further issues in how we typically orgaur color perceptions
into named colorsusing words like red and green.

In this chapter, we will mostly focus on retinal color (andlaiop the term retinal).
Retinal color theory is relatively well understood, andhis first step in understanding
other notions of color. We will first describe retinal colooin its, now, well established
bio-physical basis. Then, we will re-derive the same modelatly from perceptual
experiments. We will then discuss some of the most commar cepresentations in
computer graphics.
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Figure 19.1: Sensitivity/matching functions.

19.1 Simple Bio-Physical Model

Visible light is electromagnetic radiation that falls rdugin the wavelength$80 <

A < 770, measured in nanometers. (You can just think of each wagtieas a differ-
ent “physical flavor” of light). We will talk about two kindsf®eams of lights. Apure
beami, has one “unit” of light (measured in units of irradiance) afecific wave-
length A. A mixed beani()\) has different amounts of various wavelengths. These
amounts are determined by the functign : R — R, and are in units of spectral
irradiance. The value is always non-negative since thare fmegative light”.

The human eye has various kinds of light-sensitive cellshenrétina. Theone
cells give us the sensation of color. (Non color-blind) hasiaave three different kind
of cones, which we will call short, medium and long (aftertfavelengths of light they
are most sensitive to). Associated with these three typesruds are three sensitivity
functionsks (), kn,(X\) andk;(N\). A response function describes how strongly one
type of cone “responds” to pure beams of light of differenv@langths. For example,
ks(\) tells us how much a short-wavelength sensitive cone wilhoesl to the pure
beami,. (See the upper left of Figure 19.1).

Since each pure beam of light results in three responsesr/atuthe retina, one for
each type of cone, we can visualize this response as a siogieip a 3D space. Let
us define a 3D linear space, with coordinates labgded/, L]*. Then for a fixed\, we
can draw the retinal response as a single vector with coatehifis (\), k., (\), ki ()]
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CHAPTER 19. COLOR

As we let vary, such vectors will trace outlassocurve in space (see the top row of
Figure 19.7). The lasso curve is parametrized\byhe lasso curve lies completely in
the positive octant since all responses are positive. Theedaoth starts and ends at
the origin since these extreme wavelengths are at the baesdd the visible region,
beyond which the responses are zero. The curve spends atigmmn thel axis
(shown with blue tinted points) and finally comes close to.$haxis (shown in red).
The curve never comes close to the axis, as there is no light that stimulates these
cones alone.

In this simple model, we think of thgs, M, L] coordinates of the light beam as
describing the (retinal) color sensation produced by e beam. We use the symbol
C to represent a color itself, which we equate, for now, withaatual retinal event.
Soon we will define color more rigorously. Thus, in Figure7,Qve can think of each
3D vector agpotentiallyrepresenting some color. Vectors on the lasso curve are the
actualcolors of pure beams.

Within some ranges of intensity, the cones respond lingartie light shining on
them. Thus, for a mixed beam of light\), the three responsés, M, L] are

S = /d)\ I\ ks(\) (19.1)
Q

M = /d)\ 1) k(M) (19.2)
Q

L = / X 1(\) ki(\) (19.3)
Q

where( = [380..770].

As we look at all possible mixed beart(s\), the resulting’S, M, L' coordinates
sweep out some set of vectors in 3D space. Sirn be any positive function, the
swept set is comprised of all positive linear combinationgators on the lasso curve.
Thus, the swept set is thmnvex conever the lasso curve, which we call thelor
cone Vectors inside the cone represent actual achievable selosations. Vectors
outside the cone, such as the vertical axis do not arise aetisation from any actual
light beam, whether pure or composite.

To help visualize the cone, we have broken down its drawingigure 19.7 into
a series of steps. In the second row, we have normalizedske taurve, scaling each
vector soS + M + L = K, for some constank’. Such a scaled lasso curve is called
ahorseshoe curvéWe also add tails joining this horseshoe curve to the orilgirthe
third row, we add lines from the origin to the horseshoe cuiMeais is to try to give
you a better feel for the shape of the color cone. Finallyhafourth row, we place
an opaque plane showing one slice of the color cone. On thiseplve also draw the
actual colors that are on this slice and that are produciplsabar combinations of R,
G and B: red, green, and blue monitor elements. (This RGBespdtbe discussed
in detail below). To draw the brightest colors, subject tesén constraints, we have
chosen the value oK in S + M + L = K such that the slice includes the color with
RGB coordinatel, 0, 0]*. In wireframe, we show the RGB-cube, the set of colors that
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CHAPTER 19. COLOR

can be achieved by combinations of red green and blue witfficieats in[0..1].

There are an infinite number of vectors making up the lasseeceertainly more
than three! Thus, for vectors strictly inside the color cotteere are many ways to
generate some fixd, M, L]t coordinates using positive linear combinations of vec-
tors on the lasso curve. Each of these is equivalent to sghebeam that produces
this fixed response. Thus, there must be many physicallyndisieams of light, with
different amounts of each wavelengths, that generate the salor sensation. We call
any two such beantaetamers

Here, we summarize the distinct data types we have just asemell some that we
will soon see below

e A pure beam of light is denotdd. A mixed beam of light is denotdd)).

¢ A sensitivity function is denoted ag\). We will later also call thesmatching
functions

¢ Aretinal sensation of color is denoted ByBelow, we will use three such colors
to make a basis for color space.

e A color is represented by three coordinates, sucl$as/, L]*. The coordinates
of the observed color of a beam are calculated using the ingtébnctions as
in Equation (19.1).

e Below, we will also see a reflection functioeii)\) that describes the fraction of
each wavelength that is reflected by some physical material.

19.1.1 Map of Color Space

At this point, we already have enough information to roughbp out the color cone.

Scales of vectors in the cone correspond to brightness elsangour perceived
color sensation, and thus are not very interesting. (Thowiien we dim an orange
light, we actually perceive the color brown.) Thus it is cenient to normalize our
color diagram by scale, obtaining a 2D drawing (see Figur2)19n this diagram,
we have started with the slice of the cone from Figure 19.7di&played colors have
then been scaled so that one of R, G, or B is at full strengthc&waot display colors
outside of the drawn triangle using positive combinatiohthe R G and B display
elements of a monitor. We say that such colors lay outsideedfamutof our display.

Colors along the boundary of the cone are vivid and are perdeis “saturated”.
Starting from thelL axis, and moving along the curved portion, we move along the
rainbow colors from red to green to violet. These colors aaly be achieved by pure
beams. Additionally the color cone’s boundary has a plareatge (a line segment in
the 2D figure). The colors on this wedge are the pinks and psirfilhey do not appear
in the rainbow and can only be achieved by appropriately ¢oimép beams of red and
violet. As as we circle around the boundary, we move throhghdifferent “hues” of
color.
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Figure 19.2: Two dimensional color diagram. Colors outsifie triangle are beyond
the gamut of a computer display.

As we move in from the boundary towards the central regioh@tbne, the colors,
while maintaining their hue, desaturate, becoming pastdl eventually grayish or
whitish. (Though in our treatment we will not need to have ac#ic color formally
selected as white).

This general description can be numerically formulatedhénso called hue satura-
tion value system of describing color.

19.2 Mathematical Model

The model just described in Section 19.1 was actually dedlic¢he 19th century
using just a few perceptual experiments. They had no acoéiss technologies needed
to study cells in an eye. This was an amazing feat. Here, iewdahis original line
of reasoning and explain how our color model can be deduaed the ground up
with just the right kind of perceptual experiments. Thislwilve us a more careful
understanding of how to define color, and it will let us trealioc space with all the
tools of linear algebra, without reference to neural respsrof any kind.

We start only with the basic knowledge from physics, thattligeams can be de-
scribed as wavelength distributiof(s\), and the rough observation that distinct light
distributions can sometimes appear indistinguishablettoraan observer. In order to
carefully study such metamerism, and specifically to avaigeffects that may occur
when a human observes a complicated scene, we design aimesptad setup such as
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Figure 19.3: Basic color-matching experimental setup. htigrojectors focus light
beams with various wavelength distributions onto a larg@oebromatic screen in a
way that forms two colored patches, each with a controlledelemgth distribution.
Multiple projectors are placed on the right side so we can st what happens when
various light distributions are added together. A humareokes is asked if the two
patches can be distinguished by color, or not.

that shown in Figure 19.3. This allows us to present to anrwbséwo light beams
with known wavelength distributions. We can then ask thecoles if these beams
appear identical or different.

In our very first experiment, we test that the metameric i@taits transitive (here
we ignore the issue of just noticeable differences, andgtuieling effects). In particu-
lar we find that, ifl; (\) is indistinguishable td| (\), andl} (}) is indistinguishable to
17 (N), thenl{ () will always be indistinguishable & (\).

Due to this transitivity, we actuallgefinec(l, ())), “the color of the bean#, (A)”,
as the collection of light beams that are indistinguishabla human observer from
I1(N\). So in our case, we would hawl; (\)) = &l (M) = &Y (N)). Thus in our
mathematical modeg (retinal) color is an equivalence class of light beams

Ultimately, we would like to be able to treat the space of tolas a linear vector
space. This, for example, would allow us to easily represelurs using coordinate
vectors, and it would tell us how we could produce desiredrsaby mixing together
various “primary” colors.

Our next step, then, is to figure out how to add two colors togretWe know from
physics that when two light beamis(\) andl2()), are added together, they simply
form a combined beam with light distributidn(A) + 2 (). Thus, we attempt to define
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theadditionof two colors, as the color of the addition of two beams.
Al (M) + cla(N)) :=cla(N) + 12(X))

For this to be well defined, we must experimentally verifytthadoes not make a
difference which beam we choose as representative for ealoh dn particular, if
él1(N)) = (i (M), then we must verify (again using our setup of Figure 19.8),th
for all I3(\), we havec(ly(A\) + I2(A)) = eli(N\) + 12(N)), i.e., we must test that
the beant; (\) + I2()) is indistinguishable td} (\) + l2()\). This property is indeed
confirmed by experiment.

Our next step is to try to define what it means to multiply a cbipa non-negative
real number. Again, since we can multiply a light beam by a positive sGaie try
the definition

ad(ly (V) := dali (X)) (19.4)

Again, we need to verify that the behavior of this operatioesinot depend on our
choice of beam. Thus whetil; (\)) = &(15()\)) we must verify that for alte we have
lali(N)) = cali(N)), i.e., we must test that the beamy (\) is indistinguishable to
ali(N). This property is also confirmed by experiment.

19.2.1 One Technical Detall

In a real vector space, we are able to multiply a vector by atgreal number. If we
try this on our color representation, when we ge{l;) := ¢(—{1). This is undefined
since there is no negative light.

Still, it would be nice to be able to treat colors as vectostamapply the full power
of linear algebra to them. In particular, as we will see beldue to the shape of the
color horseshoe, we will not be able to represent all colsisasitive combinations of
just three colors. To do that, we will really need negativenbiations as well.

Our mathematical solution is first define a suitable notioguiftraction. The basic
idea behind this subtraction operation can be summarizédilasvs: when we say
C1 — Gy = C3, we really meam; = ¢3 + ¢&. In other words, subtraction from one side
of an equation is just the same as adding that term to the sither This addition is
something real, that we already understand! With this motibsubtraction, we can
give meaning to “negative” colors. By adding together alctunal negative colors, we
can get a full linear space, which we can eaitended color space

More formally, let us call any of our original equivalencasses of light beams
using the termactual color Let us define aextended coloas a formal expression of
the form

€1 —C2

where theZ are actual colors. We define two extended colyrs ¢; andcs — ¢, to be
equivalentifc; + ¢, = ¢3 + ¢, where the last expression is an equation about actual
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colors, and thus well defined. Any extended color that is moaetual color will be
called animaginary color

We can now define all of our vector operations in the obvioug Wultiplication
by —1is —(51 — 52) = (52 — 51) and addition I.'i{gl — 52) + (53 — 54) = (51 + 53) —
(G2 + ¢4). With these operations, we indeed have a linear space af@adecolors!

Finally, to keep actual distinguishable colors from cadiizug to the same extended
color during this construction, we need to verify that ouuatcolors satisfy thean-
cellation property This property states thatdfi; (A))+(l2(N)) = &l (V) +¢(l2(N))
thené(l; (M) = ¢(l{(N)). Again we verify this by experiment.

As a result, we now have a real vector space of extended cal®rgell as an em-
bedding of the actual colors within this space. From now aayil use the symbof
to refer to any extended color, and will typically drop thetié'extended”. Addition-
ally, we can interpre€(I(\)) as a linear map from the space of light distributions to
color space.

We do not yet know dimension of color space, (but we will sostalelish that it
is three). We can now go back to Figure 19.7 and think of it actue of extended
color space. Vectors inside the cone are actual colorsewlgittors outside the cone
are imaginary colors. The vector, for example, represewitidcoordinateso, 1, 0]
is an imaginary color.

19.3 Color Matching

The goal of thecolor matching experimernis to establish that the dimension of the
space of colors is three. Additionally, it will give us (siari to Equation (19.1)) a
computational form for mapping a light bedfi\) to its color coordinates in a specific
basis.

Using the setup of Figure 19.3, the observer watches twessreOn the left side
of the screen they are shown a pteet beani, of some fixed wavelength. On the
right side of the screen they observe a light that is made ysitive combinations
of three purematching beamswith wavelengthst35, 545 and625 nanometers. The
observer's goal is to adjust three knobs on the right sidetrobing the intensities of
the matching beams, so that the weighted combination ofttieetmatching beams
is indistinguishable to the test beam. For a fixgdnd referring to the knob settings
as kass(N), ksas(N) and kezs()), the goal is to set these knobs such that the beam
kass(N)lass + ksa5(N)lsa5 + keas(N)lg2s IS @ metamer withl,. If the user cannot
succeed, then they are allowed to move one or more of the mgtbbams over to the
left side and combine them with the test beam instead. In tib@matics of extended
color space, this is the same as allowing some of the thersealaesk(\) to go
negative.

This process is repeated for allin the visual range. When the matching experi-
ment is performed, we discover that the user can indeed sddnebtaining a match
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for all visible wavelengths.

Moreover, the experiment gives us the three so-called riragd¢hnctionskss (\),
ks45(A) andkeas(A), shown in the upper right of Figure 19.1. Notice that, at eafch
the wavelengthd35, 545, and625, one of the matching functions is setitpwhile the
other two are set t6.

We can summarize the result of the experiment as

ka35(N)
clx) = [(lass) llsa5) Ellsas)] [ Esa5(N) ]
keas(N)

Using some reasonable continuity assumptions about tharlimapz, we can up-
grade this equation to apply to all mixed beans as well. Demgve obtain

Jo dX 1(X) kazs(N)
al(N) = [ellazs) Ellsas) €lloas)] | Jo AN UA) Ksas(N)
Joy dX 1(N) ke2s(N)
Informally, this equation corresponds to the idea that eaisied beam is really just an
(uncountable) linear combination of pure beams.

(19.5)

From we can conclude

e Color space is three dimensional.
o [(ls35) éls45) €(lsa5)] forms a basis for this space.

e The matching functions can be used to give us the coordiétasy light dis-
tribution with respect to this basis.

As we did with the LMS color space, We can visualize this calpace in Fig-
ure 19.8. Notice that, in this case, the lasso curve passasgh each of the axes in
turn, as our basis colors are mono-chromatic. Note thouaih iththis basis, the lasso
curve does leave the first octant.

19.4 Bases

As any vector space, color space can be described using nifeergdt bases. Starting
with Equation (19.5) we can insert any (non singular) 3-bye8rix M and its inverse

to obtain
fQ dX 1(N) kazs (M)
fQ dA l(/\) k545()\)
P/
Jo dX 1(N) k1 ()

= [& & & { Jo dX T(X) k2(X) ] (19.6)
Jo AN 1N ks(N)

UN) = ([elzs) Alsas) Aloas)] M) (M
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where theg; describe a new color basis defined as
(&1 G ] = [c(lazs) E(lsas) Slleas)| M !

and thek(\) functions form the new associated matching functions, ddfbry

E1(X) Ka35(\)
ko(A) | =M | ksas(N) (19.7)
ks(\) keas(A)

Thus, there are three main conceptual ways to specify a faasislor space:

e Starting from any fixed basis for color space, suchc@sss) ¢(lsa5) (l6as5)],
we can describe a new basis relative to the fixed basis byfgperan invertible
3-by-3 matrixM .

e We can directly specify three (non-coplanar) actual coipr€Each sucte; can
be specified by some light beaht)) that generates it. (We can then plug each
suchi;(A) into the right hand side of Equation (19.5) to obtain its costes
with respect to[é(l435) c(ls45) ¢(leas)]. This fully determines the change of
basis matrixi1.)

e We can directly specify three new matching functions. To akdvmatching
functions, they must arise from a basis change like Equ#li®ré), and so each
matching function must be some linear combinatiorkgf; (), ks45(A\) and
ksas5(N) as in Equation (19.7). If we attempt to use matching fundtitrat
are not of this form, they will not preserve metamerism; fippams that are
indistinguishable to a human may map to different coordivaictors, and vice
versa. Ideally, the color sensors for a digital camera ghbalof this form, so
that the camera can truly capture color, i.e., respect neriam. Additionally,
the sensitivity functions of a manufactured camera mustlaseverywhere non-
negative.

Besides|c(lss5) ¢(ls45) (lsa5)], we have already seen another basis for color
space. In particular, the matching functions of Equatioh. 1L describe a basis for
color space where the coordinates of a color are calied/, L]*. The actual basis is
made up of three colors we can cgll, é,,, ¢;]. The coloré,, is in fact an imaginary
color, as there is no real light beam with LMS color coordésé, 1, 0]".

19.4.1 Gamut

Suppose we want a basis where all actual colors have nortwvegaordinates, and
thus, where the lasso curve never leaves the first octantn iMeefind thatat least
one of the basis vectors defining this octant must lie outsidef the cone of actual
colors. Such a basis vector must be an imaginary color. This is doplgito the shape
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of the lasso curve itself; we cannot find three vectors thét hi the lasso curve and
contain the entire curve in their positive span.

Conversely, if all of our basis vectors are actual colorsl #nus within the color
cone, then there must be some actual colors that cannot bemwith non-negative
coordinates in this basis. We say that such colors lie ogitdsidgamutof this color
space.

19.4.2 Specific Bases

The central standard basis used for color space is the ¢akbeXYZ basis. It is spec-
ified by the three matching functions calléd()\), k,(\) and k.(\), shown in the
bottom left of Figure 19.1. The coordinates for some coldhweéspect to this basis is
given by a coordinate vector that we cgl, Y, Z]t. This 3D color basis is shown in
Figure 19.9. The bottom row shows the+ Y + Z = K plane of the color cone. This
is the typical 2D figure used to visualize color space.

These particular matching functions were chosen suchhbgiare always positive,
and so that the Y-coordinate of a color represents its dveeateived “luminance”.
Thus,Y is often used as a black and white representation of the.cbla associated
basis[c;, ¢y, ;] is made up of three imaginary colors; the axes in Figure 189 a
outside of the color cone.

Throughout this book, we have been using RGB coordinatesgoribe colors. In
fact, there are a variety of different color spaces that hisetame. The specific RGB
color space currently in use is tRec. 709 RGB spacésee Figure 19.10).

In this case the basjg,, ¢,, ¢;] is made up of three actual colors intended to match
the colors of the three phosphors of an ideal monitor/tvldisp Colors with non-
negative RGB coordinates can be produced on a monitor arghit¢o lie inside the
gamutof the color space. These colors are in the first octant of itper€. But similar
to the case ofc(lyss) é(lsa5) cllsas)], there exist actual colors with some negative
RGB coordinatesSuch colors cannot be produced on a monitorAdditionally, on a
monitor, each phosphor maxes out at “1”, which also limitsakhievable outputs.

An image that has colors outside of the gamut must somehowapped into the
gamut for display. The simplest solution for this is to signplamp all negative values
at0. There are also more sophisticated methods for gamut mgugpawill be beyond
our scope.

In Section 19.7.2, we will describe another commonly entenad color space
called sRGB. As we will see, this is not a linear color space.
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19.5 Reflection Modeling

When a beam of light(\) from an illumination source hits a surface, some of thattligh
is absorbed and some reflected. The fraction of reflectetidigpends on the physical
properties of the surface’s material. Let us specify how Imoiceach wavelength is
reflected using a reflectance functiof)). In this case, we can model the light beam
reflecting off the surface using per-wavelength multigiima

(Note: this does not model all types of interactions betwedght and a surface, for
example florescence. Additionally, in this discussion, weeret concerning ourselves
with the dependence of \) on the angles of entering or exiting light, as will be done
in Chapter 21.) This multiplication happens on a per-wawgtle basis, and cannot be
simulated exactly in a 3D color space. Indeed, two matenady reflect metameric
beams under one illuminant, but may produce distinguigshebhms under a second
illuminant:

ir(Nra(N) = AN (V) & Elia(Mra(N) = ia(M)7r6(A))

As such, in some rendering situations, it is important to etddis spectral de-
pendence in reflection. More typically, we ignore this issaled model the illumi-
nant by three, say RGB, color coordinates (throwing awaysthectral information
abouti())), and likewise use three reflectance “coefficients” to mdbelsurface’s
reflectance property.

19.5.1 White Balance

Given a fixed scene, if we alter the illuminants, then the kilo an image will change
as well. For example, if we switch from a fluorescent to an fescent bulb, the
colors observed by a camera will all move towards yellow.e®ftwe wish to adjust
the image colors in order to approximate the image that wbhale been taken under a
chosen “canonical illuminant” (say daylight). This proséscalled white balancing. It
is not a basis change, but an actual transformation perfiboneall of the colors. The
simplest such kind of transform allows the user to indepatigscale the R,G and B
coordinates with three gain factors.

As just described, we cannot hope to always succeed in pirgltiee true picture
of the scene under the canonical illuminant, since we hanemdy lost the spectral
information when creating the initial image. Indeed, sorbgcts that should appear
different under the canonical illuminant may be metamenrdar the current illumi-
nant, and have the exact same color coordinates in the ¢umage. No amount of
simple white balancing can undo this.
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Edward H. Adelson

Figure 19.4: The squares marked A and B are in fact the samalrshade of gray, but
are perceived differently due to our visual processing agdlladaptation. From [1],
(©Edward Adelson.

19.6 Adaptation

The color data from the retina undergoes significant pracgse the visual system,
and humans by no means directly perceive the raw retinat colordinates of an ob-
served light beam. This processing results in a great deadwhalization; adapting to
global and local trends across the field of view.

When the illuminant changes, say from sunlight to overclagt sach of the di-
rectly observed color coordinates on the retina may underastic changes. But these
drastic changes are not ultimately perceived, and the sédoreach object remain sig-
nificantly “constant”. For example, a scary tiger will be paived as yellow under
a surprisingly wide array of illuminants (impelling us tonju This phenomenon is
called color constancy As per our discussion of white balance, no such color con-
stancy mechanism can be expected to be perfect, as too mectadpnformation has
been thrown away by the process that converts incomingrgpéeiams into triplets of
cone responses in the retina. But this process works to adggeee, which allows us
to think about a material (tiger’s fur) as actually possagsi color (scary orange).

Even when only a local region of the field of view undergoedlamination change
(say some part goes into shadow) our visual processing megt aifferently in this
region, again keeping the end perceived colors closelyiga the actual materials
observed. (See for example Figure 19.4). This process igatdtlly understood.

When we take a picture under some illuminant, but later viesvdicture under a
different ambient illuminant, the viewer’s adaptationtsts affected by both the light
coming from the image, as well as the light from the surrongdoom. Due to the
effect of the room’s light, the colors in the picture canmbtely “look wrong”. This
is, in part, why we need to do the white balancing describedab
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19.7 Non Linear Color

We have seen that retinal color can be modeled as a three siipnahlinear space. In
this section, we will see that there are also reasons to ugieeedt set of retinal color
representations that are not related linearly to our pres/amlor coordinates.

19.7.1 Perceptual Distance

The Euclidean distance between two colors in any linearrcgpace is not a good

predictor as to how “different” they will appear to a humarsetver. For example,

humans are much more sensitive to changes in dark colorshibgare to bright ones.

Various color representations have been designed thataffetter match to perceived
color distances in humans. The mappings from a linear cgace to such a color

representation is non-linear. Even so, we will still refersuch representations as
“color coordinates”.

For example, one such set of coordinates is calleeh coordinates. Thé* coor-
dinate is called “lightness” and is computed (except fopamall values) as

1
Y 3
L =116 — ) —16 19.8
<Yn> (19:8)
whereY is the second coordinate in the XYZ basis, af)ds some normalizing factor.
We will not go into the computation of theandb coordinates in this representation.

There are many uses for such a space. In particular, if wesang a fixed point
representation with 8 or fewer bits per coordinate, we attebeff storing our data
in a perceptually uniform space. When a continuuny'ofalues is bucketed into 256
evenly spaced bins, there will be significant visual gapsveeh dark colors. Ii*
coordinates, tighter bins are used in the dark region, sglthiis problem. There will be
correspondingly fewer bins for the brighter colors, busthgaps are not perceivable.

19.7.2 Gamma Correction

Gamma correction involves a transformation that lookslsintd the power operator of
Equation (19.8). It was used originally to account for nmeéarities in CRT devices,
but remains in use, in part due to its better usage of fixedt pepresentations.

Origins of Gamma: In days of yore, computer imagery was displayed on cathode
ray tubes (CRTs). Each pixel on such a display was driven bgetioltages, say
(R',G', B'). Letting the outgoing light from this pixel have a color withordinates
[R, G, B]t, these outgoing coordinates were roughly

R = (R)%
G = (G)
B = (B)®
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Figure 19.5: The data in the top image is a linear ramp of eptbus displaying (on a
monitor) equally spaced bins [#®’, G, B']* coordinates. In the lower image, a linear
ramp has been gamma corrected before being stored. Thpkydigy (on a monitor)
equally spaced bins iz, G, B]! coordinates. This should appear to move quickly out
of the dark regime, and spend more buckets on bright values.

Thus, if we wanted to obtain some specifig, G, B]* output from a pixel, we
needed to drive it with voltages:

R = R% (19.9)
G = G (19.10)
B = B*% (19.11)

Such[R’, G’, B']* values are called th@amma Correcte@®GB coordinates of a color.
The (') notates that these are nonlinear color coordinates.

Current use of Gamma: Similar to L*ab color coordinates, gamma corrected col-
ors have better perceptual uniformity than linear colorrdotates, and thus are very
useful for digital color representation (see Figure 191B)particular, popular image
compression techniques, such as JPEG, start with coloresemted ifR’, G’, B'],
and then apply a linear transform to obtain yet a new kind ofdmates calle¢y”’, C;, Cy]".
(Note that thisY”” is not related td@” through a simple power equation).

A related but slightly more involved non-linear transforande applied toR, G, B]?,
instead of Equation (19.9), to obtain SRGB coordinatesedaR/, ,,,, G4, Blrgb)-
Modern LCD displays are programmed to assume input in theselmates.

19.7.3 Quantization

The sRGB coordinates in the real rarigel] must be represented numerically. This
is often done (say in a framebuffer or file format) in a fixednoepresentation with
values|0..255]. In C, this is done using annsi gned char. We can specify the
relationship between such quantized values and real cotmdnates (for say the red
coordinate) by

byteR = round(realR * 255);
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Figure 19.6: Two different mappings between real and bytigega Going from real to
byte, we quantize each real range to the shown integer v&laimg from byte to real
we use the small cyan arrows.

realR = byteR/255.0;

Note that, for any setting of byteR, if we transform to thel representation and then
back to the byte representation, we get back the value wiedtasth. An alternative
relationship satisfying this property can be imposed ufiegexpressions:

byteR = round(f >=1.0 7 255 : (realR * 256) — .5);
realR = (byteR + .5)/ 256.0;

In this representation, and unlike the one above, the realdpiantized to byte values
are all the same size. But the byte value§ ahd255 do not map respectively tband
1. (See Figure 19.6).

19.7.4 Gamma and Graphics

On one hand, images are typically stored in gamma correc@dimates and the mon-
itor screen is expecting colors in gamma corrected cooteinaOn the other hand,
computer graphics simulates processes that are linedatgddo light beams. As such,
most computer graphics computations should be done in arlitw@or representation,
such as oufR, G, B! space. For example, we can approximately model reflectance i
[R, G, B]t. Other rendering steps, such as modeling transparencyelaaswlending

of color values for anti-aliasing, also model processesdha linear in light beams,
and thus should be done with linear color coordinates. litalighotography, white
balance should ideally be performed in a linear color sp@bés discrepancy has been
at the root of much confusion and hackery over the years.

The situation has improved recently. In current versior@pénGL we can request
an sRGB frame buffer using the call Enabl e( GL_FRAMEBUFFER SRGB) . Then
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we can pass linedi?, G, B]* values out from the fragment shader, and they will be
gamma corrected into the sRGB format before begin sent tedtezn.

Additionally, for texture mapping, we can specify that theape being input to a
texture is in SRGB format. This is done using the call
gl Texl mage2D( GL_TEXTURE 2D, 0, GL_SRGB, twi dth, theight, O,
GL_RGB, GL_UNSI GNEDBYTE, pi xdata) Whenever this texture is accessed in
a fragment shader, the data is first converted to lin&ac7, B]* coordinates, before
given to the shader.

Exercises

Ex. 48 — Given a computer screen with three kinds of color elementsadl (actual)
colors be produced by the display?

Ex. 49 — Given a camera with three matching/sensitivity functidret @are (linearly
independent) linear combinations of the, k,, k. matching functions, can all actual
colors be captured by this camera?

Ex. 50 — Suppose that the human,k,,, andk; sensitivity functions were of a dif-
ferent form, such that there did in fact exist three lightritisitions with LMS color
coordinates$l, 0, 0]%, [0, 1, 0]* and|0, 0, 1]*, respectively. What would this imply about
the shape of the space of actual colors? Would this impactamawer to Exercise 48?

Ex. 51 — Suppose that we are given the following matrix equation tange from
[A, B, C]t color coordinates toD, E, F]* coordinates:

D A
E |=N| B
F C

Also, suppose we are given the following matrix equatioatieg the matching func-
tions

kh ()‘) ka ()‘)
ki(A) | =@ | k(N
kj(A) ke(A)

What matrix equation can we write down to express the reldliestween D, £, F|*
coordinates an{H, I, J|* coordinates?
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Figure 19.7: LMS color space: Each column shows a differéaw.v First row: The
lasso curve plotted in LMS coordinates. Second row: A “ndized” lasso curve is a
horseshoe curve. Third row: rays connecting the horseslwe to the origin. Fourth
row: A slice of the convex cone over the lasso. The triangtavshactual colors in this
slice. They are representable as positive sums of monitors®, G, and B. The rest
of the RGB color cube is shown in wireframe.
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Figure 19.8: The color space arising from the matching exrpant.
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Figure 19.9: The XYZ color space.
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Figure 19.10: The RGB color space.
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