
Chapter 19

Color

In this section, we will explore the basic concept of color. We will talk about what color
is, and various ways to represent it. This is a rich topic of study, and many mysteries
about human color perception remain unanswered. We will spend extra time on this
subject, as we find it very interesting, and due to its importance not just to computer
graphics but to digital imaging as well.

Color is, in fact, an overloaded term meaning many differentthings. When a light
beam hits the retina, there is some initial neural response by thecone-cellsthat occurs
independently at each cell. We can refer to this asretinal color. Retinal color is then
processed in an integrated fashion over the entire field of view resulting in theperceived
color that we actually experience and base judgments upon. The perceived color is
often associated with the object we are observing, which we might call theobject color.

At all of these stages, the simplest thing we can say about twoparticular colors is
simply whether they are the same or different. This is something that we can often
record and quantify, and it is the main way we will deal with color in this chapter.
At the perceptual color level, there is clearly a conscious experience of color which is
much harder to deal with experimentally or formally.

Finally, there are further issues in how we typically organize our color perceptions
into named colors, using words like red and green.

In this chapter, we will mostly focus on retinal color (and will drop the term retinal).
Retinal color theory is relatively well understood, and is the first step in understanding
other notions of color. We will first describe retinal color from its, now, well established
bio-physical basis. Then, we will re-derive the same model directly from perceptual
experiments. We will then discuss some of the most common color representations in
computer graphics.

175



CHAPTER 19. COLOR

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

350 400 450 500 550 600 650 700 750

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

350 400 450 500 550 600 650 700 750

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

1.60E+00

1.80E+00

350 400 450 500 550 600 650 700 750
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

350 400 450 500 550 600 650 700 750

LMS senstivity functions                       Matching experiment matching functions    

XYZ matching  functions                        RGB matching functions                     

kl(λ)kl(λ)km(λ)km(λ)ks(λ)ks(λ) k435(λ)k435(λ) k545(λ)k545(λ) k625(λ)k625(λ)

kb(λ)kb(λ) kr(λ)kr(λ)kg(λ)kg(λ)kz(λ)kz(λ) ky(λ)ky(λ) kx(λ)kx(λ)

Figure 19.1: Sensitivity/matching functions.

19.1 Simple Bio-Physical Model

Visible light is electromagnetic radiation that falls roughly in thewavelengths380 <
λ < 770, measured in nanometers. (You can just think of each wavelength as a differ-
ent “physical flavor” of light). We will talk about two kinds of beams of lights. Apure
beamlλ has one “unit” of light (measured in units of irradiance) of aspecific wave-
lengthλ. A mixed beaml(λ) has different amounts of various wavelengths. These
amounts are determined by the functionl(·) : R → R+, and are in units of spectral
irradiance. The value is always non-negative since there isno “negative light”.

The human eye has various kinds of light-sensitive cells on the retina. Thecone
cells give us the sensation of color. (Non color-blind) humans have three different kind
of cones, which we will call short, medium and long (after thewavelengths of light they
are most sensitive to). Associated with these three types ofcones are three sensitivity
functionsks(λ), km(λ) andkl(λ). A response function describes how strongly one
type of cone “responds” to pure beams of light of different wavelengths. For example,
ks(λ) tells us how much a short-wavelength sensitive cone will respond to the pure
beamlλ. (See the upper left of Figure 19.1).

Since each pure beam of light results in three response values on the retina, one for
each type of cone, we can visualize this response as a single point in a 3D space. Let
us define a 3D linear space, with coordinates labeled[S, M, L]t. Then for a fixedλ, we
can draw the retinal response as a single vector with coordinates[ks(λ), km(λ), kl(λ)]t.
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CHAPTER 19. COLOR

As we letλ vary, such vectors will trace out alassocurve in space (see the top row of
Figure 19.7). The lasso curve is parametrized byλ. The lasso curve lies completely in
the positive octant since all responses are positive. The curve both starts and ends at
the origin since these extreme wavelengths are at the boundaries of the visible region,
beyond which the responses are zero. The curve spends a shorttime on theL axis
(shown with blue tinted points) and finally comes close to theS axis (shown in red).
The curve never comes close to theM axis, as there is no light that stimulates these
cones alone.

In this simple model, we think of the[S, M, L]t coordinates of the light beam as
describing the (retinal) color sensation produced by the light beam. We use the symbol
~c to represent a color itself, which we equate, for now, with anactual retinal event.
Soon we will define color more rigorously. Thus, in Figure 19.7, we can think of each
3D vector aspotentiallyrepresenting some color. Vectors on the lasso curve are the
actualcolors of pure beams.

Within some ranges of intensity, the cones respond linearlyto the light shining on
them. Thus, for a mixed beam of lightl(λ), the three responses[S, M, L]t are

S =

∫

Ω

dλ l(λ) ks(λ) (19.1)

M =

∫

Ω

dλ l(λ) km(λ) (19.2)

L =

∫

Ω

dλ l(λ) kl(λ) (19.3)

whereΩ = [380..770].

As we look at all possible mixed beamsl(λ), the resulting[S, M, L]t coordinates
sweep out some set of vectors in 3D space. Sincel can be any positive function, the
swept set is comprised of all positive linear combinations of vectors on the lasso curve.
Thus, the swept set is theconvex coneover the lasso curve, which we call thecolor
cone. Vectors inside the cone represent actual achievable colorsensations. Vectors
outside the cone, such as the vertical axis do not arise as thesensation from any actual
light beam, whether pure or composite.

To help visualize the cone, we have broken down its drawing inFigure 19.7 into
a series of steps. In the second row, we have normalized the lasso curve, scaling each
vector soS + M + L = K, for some constantK. Such a scaled lasso curve is called
a horseshoe curve. We also add tails joining this horseshoe curve to the origin. In the
third row, we add lines from the origin to the horseshoe curve. This is to try to give
you a better feel for the shape of the color cone. Finally, in the fourth row, we place
an opaque plane showing one slice of the color cone. On this plane, we also draw the
actual colors that are on this slice and that are producible by linear combinations of R,
G and B: red, green, and blue monitor elements. (This RGB space will be discussed
in detail below). To draw the brightest colors, subject to these constraints, we have
chosen the value ofK in S + M + L = K such that the slice includes the color with
RGB coordinates[1, 0, 0]t. In wireframe, we show the RGB-cube, the set of colors that
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CHAPTER 19. COLOR

can be achieved by combinations of red green and blue with coefficients in [0..1].

There are an infinite number of vectors making up the lasso curve, certainly more
than three! Thus, for vectors strictly inside the color cone, there are many ways to
generate some fixed[S, M, L]t coordinates using positive linear combinations of vec-
tors on the lasso curve. Each of these is equivalent to some light beam that produces
this fixed response. Thus, there must be many physically distinct beams of light, with
different amounts of each wavelengths, that generate the same color sensation. We call
any two such beamsmetamers.

Here, we summarize the distinct data types we have just seen,as well some that we
will soon see below

• A pure beam of light is denotedlλ. A mixed beam of light is denotedl(λ).

• A sensitivity function is denoted ask(λ). We will later also call thesematching
functions.

• A retinal sensation of color is denoted by~c. Below, we will use three such colors
to make a basis for color space.

• A color is represented by three coordinates, such as[S, M, L]t. The coordinates
of the observed color of a beam are calculated using the matching functions as
in Equation (19.1).

• Below, we will also see a reflection functionr(λ) that describes the fraction of
each wavelength that is reflected by some physical material.

19.1.1 Map of Color Space

At this point, we already have enough information to roughlymap out the color cone.

Scales of vectors in the cone correspond to brightness changes in our perceived
color sensation, and thus are not very interesting. (Though, when we dim an orange
light, we actually perceive the color brown.) Thus it is convenient to normalize our
color diagram by scale, obtaining a 2D drawing (see Figure 19.2). In this diagram,
we have started with the slice of the cone from Figure 19.7. All displayed colors have
then been scaled so that one of R, G, or B is at full strength. Wecannot display colors
outside of the drawn triangle using positive combinations of the R G and B display
elements of a monitor. We say that such colors lay outside of thegamutof our display.

Colors along the boundary of the cone are vivid and are perceived as “saturated”.
Starting from theL axis, and moving along the curved portion, we move along the
rainbow colors from red to green to violet. These colors can only be achieved by pure
beams. Additionally the color cone’s boundary has a planar wedge (a line segment in
the 2D figure). The colors on this wedge are the pinks and purples. They do not appear
in the rainbow and can only be achieved by appropriately combining beams of red and
violet. As as we circle around the boundary, we move through the different “hues” of
color.
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violet

green

red

cyan
yellow

purple
white

Figure 19.2: Two dimensional color diagram. Colors outsideof the triangle are beyond
the gamut of a computer display.

As we move in from the boundary towards the central region of the cone, the colors,
while maintaining their hue, desaturate, becoming pastel and eventually grayish or
whitish. (Though in our treatment we will not need to have a specific color formally
selected as white).

This general description can be numerically formulated in the so called hue satura-
tion value system of describing color.

19.2 Mathematical Model

The model just described in Section 19.1 was actually deduced in the 19th century
using just a few perceptual experiments. They had no access to the technologies needed
to study cells in an eye. This was an amazing feat. Here, we follow this original line
of reasoning and explain how our color model can be deduced from the ground up
with just the right kind of perceptual experiments. This will give us a more careful
understanding of how to define color, and it will let us treat color space with all the
tools of linear algebra, without reference to neural responses of any kind.

We start only with the basic knowledge from physics, that light beams can be de-
scribed as wavelength distributionsl(λ), and the rough observation that distinct light
distributions can sometimes appear indistinguishable to ahuman observer. In order to
carefully study such metamerism, and specifically to avoid any effects that may occur
when a human observes a complicated scene, we design an experimental setup such as
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screen

projector
human observer

Figure 19.3: Basic color-matching experimental setup. Light projectors focus light
beams with various wavelength distributions onto a large monochromatic screen in a
way that forms two colored patches, each with a controlled wavelength distribution.
Multiple projectors are placed on the right side so we can also test what happens when
various light distributions are added together. A human observer is asked if the two
patches can be distinguished by color, or not.

that shown in Figure 19.3. This allows us to present to an observer two light beams
with known wavelength distributions. We can then ask the observer if these beams
appear identical or different.

In our very first experiment, we test that the metameric relation is transitive (here
we ignore the issue of just noticeable differences, and thresholding effects). In particu-
lar we find that, ifl1(λ) is indistinguishable tol′1(λ), andl′1(λ) is indistinguishable to
l′′1 (λ), thenl′1(λ) will always be indistinguishable tol′′1 (λ).

Due to this transitivity, we actuallydefine~c(l1(λ)), “the color of the beaml1(λ)”,
as the collection of light beams that are indistinguishableto a human observer from
l1(λ). So in our case, we would have~c(l1(λ)) = ~c(l′1(λ)) = ~c(l′′1 (λ)). Thus in our
mathematical model,a (retinal) color is an equivalence class of light beams.

Ultimately, we would like to be able to treat the space of colors as a linear vector
space. This, for example, would allow us to easily representcolors using coordinate
vectors, and it would tell us how we could produce desired colors by mixing together
various “primary” colors.

Our next step, then, is to figure out how to add two colors together. We know from
physics that when two light beams,l1(λ) and l2(λ), are added together, they simply
form a combined beam with light distributionl1(λ)+ l2(λ). Thus, we attempt to define
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CHAPTER 19. COLOR

theadditionof two colors, as the color of the addition of two beams.

~c(l1(λ)) + ~c(l2(λ)) := ~c(l1(λ) + l2(λ))

For this to be well defined, we must experimentally verify that it does not make a
difference which beam we choose as representative for each color. In particular, if
~c(l1(λ)) = ~c(l′1(λ)), then we must verify (again using our setup of Figure 19.3) that,
for all l2(λ), we have~c(l1(λ) + l2(λ)) = ~c(l′1(λ) + l2(λ)), i.e., we must test that
the beaml1(λ) + l2(λ) is indistinguishable tol′1(λ) + l2(λ). This property is indeed
confirmed by experiment.

Our next step is to try to define what it means to multiply a color by a non-negative
real numberα. Again, since we can multiply a light beam by a positive scalar, we try
the definition

α~c(l1(λ)) := ~c(αl1(λ)) (19.4)

Again, we need to verify that the behavior of this operation does not depend on our
choice of beam. Thus when~c(l1(λ)) = ~c(l′1(λ)) we must verify that for allα we have
~c(αl1(λ)) = ~c(αl′1(λ)), i.e., we must test that the beamαl1(λ) is indistinguishable to
αl′1(λ). This property is also confirmed by experiment.

19.2.1 One Technical Detail

In a real vector space, we are able to multiply a vector by a negative real number. If we
try this on our color representation, when we get−~c(l1) := ~c(−l1). This is undefined
since there is no negative light.

Still, it would be nice to be able to treat colors as vectors and to apply the full power
of linear algebra to them. In particular, as we will see below, due to the shape of the
color horseshoe, we will not be able to represent all colors as positive combinations of
just three colors. To do that, we will really need negative combinations as well.

Our mathematical solution is first define a suitable notion ofsubtraction. The basic
idea behind this subtraction operation can be summarized asfollows: when we say
~c1 − ~c2 = ~c3, we really mean~c1 = ~c3 + ~c2. In other words, subtraction from one side
of an equation is just the same as adding that term to the otherside. This addition is
something real, that we already understand! With this notion of subtraction, we can
give meaning to “negative” colors. By adding together actual and negative colors, we
can get a full linear space, which we can callextended color space.

More formally, let us call any of our original equivalence classes of light beams
using the term:actual color. Let us define anextended coloras a formal expression of
the form

~c1 − ~c2

where the~c are actual colors. We define two extended colors~c1−~c2 and~c3−~c4, to be
equivalent if~c1 + ~c4 = ~c3 + ~c2, where the last expression is an equation about actual
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colors, and thus well defined. Any extended color that is not an actual color will be
called animaginary color.

We can now define all of our vector operations in the obvious way. Multiplication
by−1 is−(~c1−~c2) := (~c2−~c1) and addition is(~c1−~c2) + (~c3−~c4) := (~c1 +~c3)−
(~c2 + ~c4). With these operations, we indeed have a linear space of extended colors!

Finally, to keep actual distinguishable colors from collapsing to the same extended
color during this construction, we need to verify that our actual colors satisfy thecan-
cellation property. This property states that if~c(l1(λ))+~c(l2(λ)) = ~c(l′1(λ))+~c(l2(λ))
then~c(l1(λ)) = ~c(l′1(λ)). Again we verify this by experiment.

As a result, we now have a real vector space of extended colors, as well as an em-
bedding of the actual colors within this space. From now on, we will use the symbol~c
to refer to any extended color, and will typically drop the term “extended”. Addition-
ally, we can interpret~c(l(λ)) as a linear map from the space of light distributions to
color space.

We do not yet know dimension of color space, (but we will soon establish that it
is three). We can now go back to Figure 19.7 and think of it as a picture of extended
color space. Vectors inside the cone are actual colors, while vectors outside the cone
are imaginary colors. The vector, for example, representedwith coordinates[0, 1, 0]t

is an imaginary color.

19.3 Color Matching

The goal of thecolor matching experimentis to establish that the dimension of the
space of colors is three. Additionally, it will give us (similar to Equation (19.1)) a
computational form for mapping a light beaml(λ) to its color coordinates in a specific
basis.

Using the setup of Figure 19.3, the observer watches two screens. On the left side
of the screen they are shown a puretest beamlλ of some fixed wavelengthλ. On the
right side of the screen they observe a light that is made up ofpositive combinations
of three purematching beams, with wavelengths435, 545 and625 nanometers. The
observer’s goal is to adjust three knobs on the right side, controlling the intensities of
the matching beams, so that the weighted combination of the three matching beams
is indistinguishable to the test beam. For a fixedλ, and referring to the knob settings
ask435(λ), k545(λ) andk625(λ), the goal is to set these knobs such that the beam
k435(λ)l435 + k545(λ)l545 + k625(λ)l625 is a metamer withlλ. If the user cannot
succeed, then they are allowed to move one or more of the matching beams over to the
left side and combine them with the test beam instead. In the mathematics of extended
color space, this is the same as allowing some of the the scalar valuesk(λ) to go
negative.

This process is repeated for allλ in the visual range. When the matching experi-
ment is performed, we discover that the user can indeed succeed in obtaining a match
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for all visible wavelengths.

Moreover, the experiment gives us the three so-called matching functionsk435(λ),
k545(λ) andk625(λ), shown in the upper right of Figure 19.1. Notice that, at eachof
the wavelengths435, 545, and625, one of the matching functions is set to1, while the
other two are set to0.

We can summarize the result of the experiment as

~c(lλ) = [~c(l435) ~c(l545) ~c(l645)]





k435(λ)
k545(λ)
k625(λ)





Using some reasonable continuity assumptions about the linear map~c, we can up-
grade this equation to apply to all mixed beans as well. Doingso, we obtain

~c(l(λ)) = [~c(l435) ~c(l545) ~c(l645)]





∫

Ω
dλ l(λ) k435(λ)

∫

Ω dλ l(λ) k545(λ)
∫

Ω
dλ l(λ) k625(λ)



 (19.5)

Informally, this equation corresponds to the idea that eachmixed beam is really just an
(uncountable) linear combination of pure beams.

From we can conclude

• Color space is three dimensional.

• [~c(l435) ~c(l545) ~c(l645)] forms a basis for this space.

• The matching functions can be used to give us the coordinatesof any light dis-
tribution with respect to this basis.

As we did with the LMS color space, We can visualize this colorspace in Fig-
ure 19.8. Notice that, in this case, the lasso curve passes through each of the axes in
turn, as our basis colors are mono-chromatic. Note though that, in this basis, the lasso
curve does leave the first octant.

19.4 Bases

As any vector space, color space can be described using many different bases. Starting
with Equation (19.5) we can insert any (non singular) 3-by-3matrixM and its inverse
to obtain

~c(l(λ)) =
(

[~c(l435) ~c(l545) ~c(l645)]M
−1
)



M





∫

Ω dλ l(λ) k435(λ)
∫

Ω
dλ l(λ) k545(λ)

∫

Ω
dλ l(λ) k625(λ)









= [~c1 ~c2 ~c3]





∫

Ω dλ l(λ) k1(λ)
∫

Ω
dλ l(λ) k2(λ)

∫

Ω
dλ l(λ) k3(λ)



 (19.6)
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where the~ci describe a new color basis defined as

[~c1 ~c2 ~c3] = [~c(l435) ~c(l545) ~c(l645)]M
−1

and thek(λ) functions form the new associated matching functions, defined by





k1(λ)
k2(λ)
k3(λ)



 = M





k435(λ)
k545(λ)
k625(λ)



 (19.7)

Thus, there are three main conceptual ways to specify a basisfor color space:

• Starting from any fixed basis for color space, such as[~c(l435) ~c(l545) ~c(l645)],
we can describe a new basis relative to the fixed basis by specifying an invertible
3-by-3 matrixM .

• We can directly specify three (non-coplanar) actual colors~ci. Each such~ci can
be specified by some light beamli(λ) that generates it. (We can then plug each
suchli(λ) into the right hand side of Equation (19.5) to obtain its coordinates
with respect to[~c(l435) ~c(l545) ~c(l645)]. This fully determines the change of
basis matrixM .)

• We can directly specify three new matching functions. To be valid matching
functions, they must arise from a basis change like Equation(19.6), and so each
matching function must be some linear combination ofk435(λ), k545(λ) and
k625(λ) as in Equation (19.7). If we attempt to use matching functions that
are not of this form, they will not preserve metamerism; light beams that are
indistinguishable to a human may map to different coordinate vectors, and vice
versa. Ideally, the color sensors for a digital camera should be of this form, so
that the camera can truly capture color, i.e., respect metamerism. Additionally,
the sensitivity functions of a manufactured camera must also be everywhere non-
negative.

Besides[~c(l435) ~c(l545) ~c(l645)], we have already seen another basis for color
space. In particular, the matching functions of Equation (19.1) describe a basis for
color space where the coordinates of a color are called[S, M, L]t. The actual basis is
made up of three colors we can call[~cs,~cm,~cl]. The color~cm is in fact an imaginary
color, as there is no real light beam with LMS color coordinates[0, 1, 0]t.

19.4.1 Gamut

Suppose we want a basis where all actual colors have non-negative coordinates, and
thus, where the lasso curve never leaves the first octant. Then we find thatat least
one of the basis vectors defining this octant must lie outsideof the cone of actual
colors. Such a basis vector must be an imaginary color. This is due simply to the shape

Foundations of 3D Computer Graphics
S.J. Gortler

MIT Press, 2012

184



CHAPTER 19. COLOR

of the lasso curve itself; we cannot find three vectors that both hit the lasso curve and
contain the entire curve in their positive span.

Conversely, if all of our basis vectors are actual colors, and thus within the color
cone, then there must be some actual colors that cannot be written with non-negative
coordinates in this basis. We say that such colors lie outside thegamutof this color
space.

19.4.2 Specific Bases

The central standard basis used for color space is the calledthe XYZ basis. It is spec-
ified by the three matching functions calledkx(λ), ky(λ) and kz(λ), shown in the
bottom left of Figure 19.1. The coordinates for some color with respect to this basis is
given by a coordinate vector that we call[X, Y, Z]t. This 3D color basis is shown in
Figure 19.9. The bottom row shows theX +Y +Z = K plane of the color cone. This
is the typical 2D figure used to visualize color space.

These particular matching functions were chosen such that they are always positive,
and so that the Y-coordinate of a color represents its overall perceived “luminance”.
Thus,Y is often used as a black and white representation of the color. The associated
basis[~cx,~cy,~cz ] is made up of three imaginary colors; the axes in Figure 19.9 are
outside of the color cone.

Throughout this book, we have been using RGB coordinates to describe colors. In
fact, there are a variety of different color spaces that use this name. The specific RGB
color space currently in use is theRec. 709 RGB space. (see Figure 19.10).

In this case the basis[~cr,~cg,~cb] is made up of three actual colors intended to match
the colors of the three phosphors of an ideal monitor/tv display. Colors with non-
negative RGB coordinates can be produced on a monitor and aresaid to lie inside the
gamutof the color space. These colors are in the first octant of the Figure. But similar
to the case of[~c(l435) ~c(l545) ~c(l645)], there exist actual colors with some negative
RGB coordinates.Such colors cannot be produced on a monitor.Additionally, on a
monitor, each phosphor maxes out at “1”, which also limits the achievable outputs.

An image that has colors outside of the gamut must somehow be mapped into the
gamut for display. The simplest solution for this is to simply clamp all negative values
at0. There are also more sophisticated methods for gamut mapping that will be beyond
our scope.

In Section 19.7.2, we will describe another commonly encountered color space
called sRGB. As we will see, this is not a linear color space.
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19.5 Reflection Modeling

When a beam of lighti(λ) from an illumination source hits a surface, some of that light
is absorbed and some reflected. The fraction of reflected light depends on the physical
properties of the surface’s material. Let us specify how much of each wavelength is
reflected using a reflectance functionr(λ). In this case, we can model the light beam
reflecting off the surface using per-wavelength multiplication

l(λ) = i(λ)r(λ)

(Note: this does not model all types of interactions betweena light and a surface, for
example florescence. Additionally, in this discussion, we are not concerning ourselves
with the dependence ofr(λ) on the angles of entering or exiting light, as will be done
in Chapter 21.) This multiplication happens on a per-wavelength basis, and cannot be
simulated exactly in a 3D color space. Indeed, two materialsmay reflect metameric
beams under one illuminant, but may produce distinguishable beams under a second
illuminant:

~c(i1(λ)ra(λ)) = ~c(i1(λ)rb(λ)) < ~c(i2(λ)ra(λ)) = ~c(i2(λ)rb(λ))

As such, in some rendering situations, it is important to model this spectral de-
pendence in reflection. More typically, we ignore this issue, and model the illumi-
nant by three, say RGB, color coordinates (throwing away thespectral information
abouti(λ)), and likewise use three reflectance “coefficients” to modelthe surface’s
reflectance property.

19.5.1 White Balance

Given a fixed scene, if we alter the illuminants, then the colors in an image will change
as well. For example, if we switch from a fluorescent to an incandescent bulb, the
colors observed by a camera will all move towards yellow. Often, we wish to adjust
the image colors in order to approximate the image that wouldhave been taken under a
chosen “canonical illuminant” (say daylight). This process is called white balancing. It
is not a basis change, but an actual transformation performed on all of the colors. The
simplest such kind of transform allows the user to independently scale the R,G and B
coordinates with three gain factors.

As just described, we cannot hope to always succeed in producing the true picture
of the scene under the canonical illuminant, since we have already lost the spectral
information when creating the initial image. Indeed, some objects that should appear
different under the canonical illuminant may be metameric under the current illumi-
nant, and have the exact same color coordinates in the current image. No amount of
simple white balancing can undo this.
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Figure 19.4: The squares marked A and B are in fact the same retinal shade of gray, but
are perceived differently due to our visual processing and local adaptation. From [1],
c©Edward Adelson.

19.6 Adaptation

The color data from the retina undergoes significant processing in the visual system,
and humans by no means directly perceive the raw retinal color coordinates of an ob-
served light beam. This processing results in a great deal ofnormalization; adapting to
global and local trends across the field of view.

When the illuminant changes, say from sunlight to overcast sky, each of the di-
rectly observed color coordinates on the retina may undergodrastic changes. But these
drastic changes are not ultimately perceived, and the colors for each object remain sig-
nificantly “constant”. For example, a scary tiger will be perceived as yellow under
a surprisingly wide array of illuminants (impelling us to run). This phenomenon is
calledcolor constancy. As per our discussion of white balance, no such color con-
stancy mechanism can be expected to be perfect, as too much spectral information has
been thrown away by the process that converts incoming spectral beams into triplets of
cone responses in the retina. But this process works to a great degree, which allows us
to think about a material (tiger’s fur) as actually possessing a color (scary orange).

Even when only a local region of the field of view undergoes an illumination change
(say some part goes into shadow) our visual processing may adapt differently in this
region, again keeping the end perceived colors closely tiedwith the actual materials
observed. (See for example Figure 19.4). This process is notyet fully understood.

When we take a picture under some illuminant, but later view the picture under a
different ambient illuminant, the viewer’s adaptation state is affected by both the light
coming from the image, as well as the light from the surrounding room. Due to the
effect of the room’s light, the colors in the picture can ultimately “look wrong”. This
is, in part, why we need to do the white balancing described above.
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19.7 Non Linear Color

We have seen that retinal color can be modeled as a three dimensional linear space. In
this section, we will see that there are also reasons to use a different set of retinal color
representations that are not related linearly to our previous color coordinates.

19.7.1 Perceptual Distance

The Euclidean distance between two colors in any linear color space is not a good
predictor as to how “different” they will appear to a human observer. For example,
humans are much more sensitive to changes in dark colors thanthey are to bright ones.
Various color representations have been designed that offer a better match to perceived
color distances in humans. The mappings from a linear color space to such a color
representation is non-linear. Even so, we will still refer to such representations as
“color coordinates”.

For example, one such set of coordinates is calledL∗ab coordinates. TheL∗ coor-
dinate is called “lightness” and is computed (except for very small values) as

L∗ = 116

(

Y

Yn

)
1

3

− 16 (19.8)

whereY is the second coordinate in the XYZ basis, andYn is some normalizing factor.
We will not go into the computation of thea andb coordinates in this representation.

There are many uses for such a space. In particular, if we are using a fixed point
representation with 8 or fewer bits per coordinate, we are better off storing our data
in a perceptually uniform space. When a continuum ofY values is bucketed into 256
evenly spaced bins, there will be significant visual gaps between dark colors. InL∗

coordinates, tighter bins are used in the dark region, solving this problem. There will be
correspondingly fewer bins for the brighter colors, but these gaps are not perceivable.

19.7.2 Gamma Correction

Gamma correction involves a transformation that looks similar to the power operator of
Equation (19.8). It was used originally to account for non-linearities in CRT devices,
but remains in use, in part due to its better usage of fixed point representations.

Origins of Gamma: In days of yore, computer imagery was displayed on cathode
ray tubes (CRTs). Each pixel on such a display was driven by three voltages, say
(R′, G′, B′). Letting the outgoing light from this pixel have a color withcoordinates
[R, G, B]t, these outgoing coordinates were roughly

R = (R′)
1

.45

G = (G′)
1

.45

B = (B′)
1

.45
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Figure 19.5: The data in the top image is a linear ramp of colors, thus displaying (on a
monitor) equally spaced bins in[R′, G′, B′]t coordinates. In the lower image, a linear
ramp has been gamma corrected before being stored. Thus, displaying (on a monitor)
equally spaced bins in[R, G, B]t coordinates. This should appear to move quickly out
of the dark regime, and spend more buckets on bright values.

Thus, if we wanted to obtain some specific[R, G, B]t output from a pixel, we
needed to drive it with voltages:

R′ = R.45 (19.9)

G′ = G.45 (19.10)

B′ = B.45 (19.11)

Such[R′, G′, B′]t values are called theGamma CorrectedRGB coordinates of a color.
The (’) notates that these are nonlinear color coordinates.

Current use of Gamma: Similar toL∗ab color coordinates, gamma corrected col-
ors have better perceptual uniformity than linear color coordinates, and thus are very
useful for digital color representation (see Figure 19.5).In particular, popular image
compression techniques, such as JPEG, start with colors represented in[R′, G′, B′]t,
and then apply a linear transform to obtain yet a new kind of coordinates called[Y ′, C′

B, C′
R]t.

(Note that thisY ′ is not related toY through a simple power equation).

A related but slightly more involved non-linear transform can be applied to[R, G, B]t,
instead of Equation (19.9), to obtain sRGB coordinates, called [R′

srgb, G′
srgb, B′

srgb]t.
Modern LCD displays are programmed to assume input in these coordinates.

19.7.3 Quantization

The sRGB coordinates in the real range[0..1] must be represented numerically. This
is often done (say in a framebuffer or file format) in a fixed point representation with
values[0..255]. In C, this is done using anunsigned char. We can specify the
relationship between such quantized values and real color coordinates (for say the red
coordinate) by

byteR = round(realR ∗ 255);
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0.0 1.0

0 2551 2 254253…

0.0 1.0

0 1 2 255254… 253

Figure 19.6: Two different mappings between real and byte values. Going from real to
byte, we quantize each real range to the shown integer value.Going from byte to real
we use the small cyan arrows.

realR = byteR/255.0;

Note that, for any setting of byteR, if we transform to the real representation and then
back to the byte representation, we get back the value we started with. An alternative
relationship satisfying this property can be imposed usingthe expressions:

byteR = round(f >= 1.0 ? 255 : (realR ∗ 256)− .5);

realR = (byteR + .5)/ 256.0;

In this representation, and unlike the one above, the real bins quantized to byte values
are all the same size. But the byte values of0 and255 do not map respectively to0 and
1. (See Figure 19.6).

19.7.4 Gamma and Graphics

On one hand, images are typically stored in gamma corrected coordinates and the mon-
itor screen is expecting colors in gamma corrected coordinates. On the other hand,
computer graphics simulates processes that are linearly related to light beams. As such,
most computer graphics computations should be done in a linear color representation,
such as our[R, G, B]t space. For example, we can approximately model reflectance in
[R, G, B]t. Other rendering steps, such as modeling transparency, as well as blending
of color values for anti-aliasing, also model processes that are linear in light beams,
and thus should be done with linear color coordinates. In digital photography, white
balance should ideally be performed in a linear color space.This discrepancy has been
at the root of much confusion and hackery over the years.

The situation has improved recently. In current versions ofOpenGL we can request
an sRGB frame buffer using the callglEnable(GL FRAMEBUFFER SRGB). Then
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we can pass linear[R, G, B]t values out from the fragment shader, and they will be
gamma corrected into the sRGB format before begin sent to thescreen.

Additionally, for texture mapping, we can specify that the image being input to a
texture is in sRGB format. This is done using the call
glTexImage2D(GL TEXTURE 2D, 0, GL SRGB, twidth, theight, 0,
GL RGB, GL UNSIGNED BYTE, pixdata) Whenever this texture is accessed in
a fragment shader, the data is first converted to linear[R, G, B]t coordinates, before
given to the shader.

Exercises

Ex. 48 — Given a computer screen with three kinds of color elements, can all (actual)
colors be produced by the display?

Ex. 49 — Given a camera with three matching/sensitivity functions that are (linearly
independent) linear combinations of thekx, ky, kz matching functions, can all actual
colors be captured by this camera?

Ex. 50 — Suppose that the humanks,km, andkl sensitivity functions were of a dif-
ferent form, such that there did in fact exist three light distributions with LMS color
coordinates[1, 0, 0]t, [0, 1, 0]t and[0, 0, 1]t, respectively. What would this imply about
the shape of the space of actual colors? Would this impact your answer to Exercise 48?

Ex. 51 — Suppose that we are given the following matrix equation to change from
[A, B, C]t color coordinates to[D, E, F ]t coordinates:





D
E
F



 = N





A
B
C





Also, suppose we are given the following matrix equation relating the matching func-
tions





kh(λ)
ki(λ)
kj(λ)



 = Q





ka(λ)
kb(λ)
kc(λ)





What matrix equation can we write down to express the relation between[D, E, F ]t

coordinates and[H, I, J ]t coordinates?
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L

S

M

Figure 19.7: LMS color space: Each column shows a different view. First row: The
lasso curve plotted in LMS coordinates. Second row: A “normalized” lasso curve is a
horseshoe curve. Third row: rays connecting the horseshoe curve to the origin. Fourth
row: A slice of the convex cone over the lasso. The triangle shows actual colors in this
slice. They are representable as positive sums of monitor colors R, G, and B. The rest
of the RGB color cube is shown in wireframe.
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Figure 19.8: The color space arising from the matching experiment.
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Z
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Y

Figure 19.9: The XYZ color space.

Foundations of 3D Computer Graphics
S.J. Gortler

MIT Press, 2012

194



CHAPTER 19. COLOR

Figure 19.10: The RGB color space.
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