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Abstract. Image restoration and reconstruction from blurry and noisy observation is known to be ill-posed. To stabilize

the recovery, total variation (TV) regularization was introduced by Rudin, Osher and Fatemi in [24], which has demonstrated

superiority in preserving image edges. However, the nondifferentiability of TV makes the underlying optimization problems

difficult to solve. In this paper, we propose to solve TV deconvolution problems by alternating direction method (ADM)

— a variant of the classic augmented Lagrangian method for structured optimization. The main idea of our approach is to

reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize

its augmented Lagrangian function using a Gauss-Seidel updates of both primal and dual variables. This ADM approach can be

applied to both single- and multi-channel images with either Gaussian or impulsive noise, and permit cross-channel blurs when

the underlying image has more than one channel. The per-iteration computational complexity of the algorithm is dominated

by several fast Fourier transforms. We present extensive experimental results concerning different blurs and noise to compare

with FTVd [34, 37, 38] — a state-of-the-art algorithm for TV image reconstruction, and the results indicate that the ADM

approach is more stable and efficient.
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1. Introduction. In this paper, we consider image restoration problem from blurry and noisy observa-
tion. Without loss of generality, we assume that the underlying image is grayscale and has a square domain.
Let x̄ ∈ Rn2

be an original n×n image, K ∈ Rn2×n2
be a blurring (or convolution) operator, ω ∈ Rn2

be an
additive noise, and f ∈ Rn2

be an observation which satisfies the relationship

f = Kx̄ + ω. (1.1)

Given K, our objective is to recover x̄ from f , which is known as deconvolution or deblurring. When K is
the identity operator, recovering x̄ from f is refereed as denoising.

It is well-known that recovering x̄ from f by directly inverting (1.1) is unstable and produces useless
results because the solution is highly sensitive to the noise ω. To stabilize the recovery of x̄, one must utilize
some prior information. In such a stabilization scheme, a common approach is to add a regularizer to certain
data fidelity, resulting to the following reconstruction model

min
x

Φreg(x) + µΦfid(x, f), (1.2)

where in the objective function, Φreg(x) regularizes the solution by enforcing certain prior constraints,
Φfid(x, f) measures the violation of the relation between x and the observation f , and µ is a positive
parameter which is used to balance the two terms for minimization.

Traditional regularization techniques include the Tikhonov-like regularization [28], the TV regularization
[24], both of which have been well studied in the literature, and others. A discrete Tikhonov-like regulariza-
tion takes the form Φreg(x) =

∑
i

∑
j ‖(D(j)x)i‖2, where D(j)’s stand for a certain finite difference operator,

the inner summation is taken over some index set, and the outer one is taken over all the pixels. Although
the resulting minimization problems are relatively easy to solve, Tikhonov-like regularization tends to make
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images overly smoothed and often fails to adequately preserve important image attributes such as sharp
edges. In comparison, the total variation (TV) regularization, first introduced in [24] by Rudin, Osher and
Fatemi for image denoising and then generalized to image deconvolution in [25], overcomes these drawbacks
and has been shown both experimentally and theoretically to be suitable for preserving sharp edges. The
discrete form of TV for a grayscale image x ∈ Rn2

is given by

TV(x) =
∑n2

i=1
‖Dix‖2, (1.3)

where, for each i, Dix ∈ R2 represents the first-order finite difference of x at pixel i in both horizontal
and vertical directions, the quantity ‖Dix‖2 is the variation of x at pixel i, and the summation in (1.3)
is taken over all pixels, which explains the name of TV. We note that the 2-norm can be replaced by the
1-norm in (1.3), in which case the resulting TV is an anisotropic discretization because the 1-norm is not
rotation invariant. In contrast, the resulting TV is isotropic when the 2-norm is used. We emphasize that
our approach applies to both the isotropic and the anisotropic TV deconvolution problems. For simplicity,
we will treat only the isotropic case in detail because the treatment for the anisotropic case is completely
analogous. We point out that, although the isotropic TV is often preferred over any anisotropic ones, both
types of discretizations lead to the so-called staircasing effects; see e.g., [5, 23]. Besides Tikhonov and TV-like
regularization, there are other well studied regularizer, such as the Mumford-Shah regularization [21] and
its variants [1, 26].

The fidelity term in (1.2) is usually taken as a penalization on the difference between Kx and f measured
in different norms. Two common choices of Φfid(x) are ‖Kx− f‖22 and ‖Kx− f‖1, which are, respectively,
suitable for Gaussian and impulsive noise. Combining TV with the two types of fidelity, we get the two
widely studied deconvolution models

min
x

∑n2

i=1
‖Dix‖2 +

µ

2
‖Kx− f‖22 (1.4)

and

min
x

∑n2

i=1
‖Dix‖2 + µ‖Kx− f‖1. (1.5)

In this paper, we will derive fast algorithms for both problems (1.4) and (1.5), which will be referred as
TV/L2 and TV/L1, respectively, and their multichannel extensions. In the rest of this section, we introduce
the notation, give a brief review of existing methods for TV deconvolution problems, and then describe the
organization of this paper.

1.1. Notation. We let superscript “>” be the transpose (conjugate transpose) operator for real (com-
plex) quantities. In an iterative scheme, we let a superscript index be the counter of iteration number.
The ith component of a vector v is denoted by vi. The two first-order global finite difference operators in
horizontal and vertical directions are, respectively, denoted by D(1) and D(2), which are n2-by-n2 matrices.
As used in (1.3), Di ∈ R2×n2

is a two-row matrix formed by stacking the ith row of D(1) on that of D(2).
For vectors u and v, we let (u; v) , (u>, v>)>. Similarly, for matrices A1 and A2 with identical number of
columns, we let (A1;A2) , (A>1 , A>2 )>. Without misleading, we let

∑
i be the sum taken over 1 to n2. In

the rest of this paper, we let ‖ · ‖ be to the 2-norm. Additional notation will be introduced as the paper
proceeds.

1.2. A brief review of existing methods. In this section, we review briefly some existing methods
for solving TV deconvolution problems. These methods mainly concerned on the TV/L2 problem (1.4) and
most of them, if not all, can be generalized to the TV/L1 problem (1.5).
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The first class of methods are based on smoothing the TV term. Since TV is nonsmooth, which caused
the main difficulty, a number of methods are based on smoothing it and solving resulting approximation
problems. The TV/L2 problem (1.4) is usually approximated by

min
x

∑
i

√
‖Dix‖2 + ε +

µ

2
‖Kx− f‖2, (1.6)

where ε > 0 is a small constant. As such, ordinary methods for unconstrained optimization can be applied,
such as gradient descent method which takes the form of

xk+1 = xk − τkg(xk),

where τk > 0 is a steplength, and g(x) is the gradient of the smoothed objective function in (1.6). In
the pioneer work [24], a time-marching scheme was used to solve a partial differential equation system,
which in optimization point of view is equivalent to a constant steplength gradient descent method. This
time-marching scheme suffers slow convergence especially when the iterate point approaches the solution
set. Although certain line search can be incorporated to speedup convergence, it still converges slowly
especially when ε becomes small. Another well-known method for the smoothed TV/L2 problem (1.6) is the
linearized gradient method proposed in [33] for denoising and in [36] for deblurring. The idea of the linearized
gradient method is to solve the Euler-Lagrangian equation via a fixed-point iteration. In each iteration of
the linearized gradient method, a linear system needs to be solved, which becomes more and more difficult
as ε goes to 0, or as K becomes more ill-conditioned. As a result, it is not efficient especially for large and/or
severely ill-conditioned problems. Furthermore, both the explicit time-marching scheme and the linearized
gradient method are first-order methods and thus are linearly convergent at best. To overcome the linear
convergence of first-order methods, the authors of [33] incorporated Newton method to solve (1.6). Indeed
quadratic convergence was observed. However, the large per-iteration cost of Newton method prevents its
practical applicability, especially to large sized images. Moreover, as ε becomes smaller, the computation of
Newton directions becomes more difficult.

Another class of algorithms for TV problems are the iterative shrinkage/thresholding (IST) algorithms,
which are independently proposed and analyzed by several authors in different fields [8, 9, 32, 27]. In [3],
Bioucas-Dias and Figueiredo introduced a two-step IST (TwIST) algorithm, which exhibits much faster con-
vergence than the primal IST algorithm for ill-conditioned problems. Recently, Beck and Teboulle [2] present
a new fast iterative shrinkage-thresholding algorithm (FISTA), which not only preserves the computational
simplicity of IST but also has an optimal global rate of convergence. We note that IST-based algorithms
for TV deconvolution requires to solve a denoising subproblem at each iteration and does not able to take
advantage of problem structures.

Recently, a fast TV deconvolution algorithm called FTVd was proposed in [34] for the solution of (1.4).
Since both K and the finite difference operators have structures, it is desirable to design an algorithm that
can take advantage of problem structures. For this purpose, the authors of [34] first transformed (1.4) as an
equivalent constrained problem of the form

min
x,y

{∑
i
‖yi‖+

µ

2
‖Kx− f‖2 : yi = Dix, i = 1, . . . , n2

}
, (1.7)

where, for each i, yi ∈ R2 is an auxiliary vector, and considered solution algorithms for (1.7) that are
capable of utilizing convolution structures. We note that in (1.7) the objective function is separable and the
constraints are linear. For convenience, we let y = (y1; y2) ∈ R2n2

, where y1 and y2 are vectors of length
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n2 satisfying ((y1)i; (y2)i) = yi ∈ R2 for i = 1, . . . , n2. Then, the classical quadratic penalty method was
applied to (1.7) in [34], which gives the following formulation

min
x,y

∑
i

(
‖yi‖+

β

2
‖yi −Dix‖2

)
+

µ

2
‖Kx− f‖2, (1.8)

where β À 0 is a penalty parameter. Finally, an alternating minimization with respect to x and y was
applied to (1.8). Since the objective function in (1.8) is separable with respect to each yi, and both K and
the finite different operators are convolution matrices, both subproblems can be solved easily and exactly by
either simple shrinkage or fast Fourier transforms (FFTs). Furthermore, the overall convergence of FTVd is
accelerated by heuristic continuation on β. Experimental results provided in [34] show that FTVd converges
much faster than those algorithms that can not make use of problem structures.

From optimization theory, the solution of (1.8) well approximates that of (1.4) only when β becomes
large, which results to numerical difficulties. To avoid β going to infinity, the classical augmented Lagrangian
method [20, 31] (ALM) was applied in [16] resulting the following iterative framework

{
(xk+1, yk+1) ← arg minx,y LA(x, y, λk),
λk+1 ← λk − β(yk+1 −Dxk+1),

(1.9)

where LA(x, y, λ) is the augmented Lagrangian function of (1.7) defined by

LA(x, y, λ) ,
∑

i

(
‖yi‖ − λ>i (yi −Dix) +

β

2
‖yi −Dix‖2

)
+

µ

2
‖Kx− f‖2, (1.10)

where each λi is a vector in R2 and λ ∈ R2n2
, similar to y, is a reordering of λi, i = 1, 2, . . . , n2. In [16],

the authors derived (1.9) from the Bregman iterative method [30]. It is well-known that the presence and
iterative updates of multiplier λ avoids β going to infinity and guarantees convergence of (1.9) to a solution
of (1.7). The disadvantage of (1.9) is the exact minimization of LA with respect to (x, y) at each iteration,
which requires its own iteration. In this paper, we propose the use of alternating direction method (ADM)
for the solution of (1.4), which is a variant of the ALM (1.9).

1.3. Organization. The rest of this paper is organized as follows. In Section 2, we describe the
framework of ADM and discuss how to apply it to TV/L2. In this section, we also review some recent
applications of the ADM. In Section 3, we present comparison results with FTVd [34] to demonstrate the
effectiveness of the ADM. In Section 4, we extend the ADM approach to multichannel image reconstruction
and TV/L1 problems along with comparison results with FTVd. Finally, some concluding remarks are drawn
in Section 5.

2. Alternating Direction Method for TV/L2.

2.1. A General Framework of the ADM. The basic idea of ADM goes back to the work of Glowinski
and Marocco [13] and Gabay and Mercier [12]. Let θ1(·) and θ2(·) be convex functionals and A be a continuous
linear operator. The authors of [12] considered minimizing an energy function of the form

min
u

θ1(u) + θ2(Au). (2.1)

By introducing an auxiliary variable v, problem (2.1) was equivalently transformed to

min
u,v

{θ1(u) + θ2(v) : Au = v} , (2.2)
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which decoupled the difficulties relative to the functionals θ1(·) and θ2(·) from the possible ill-conditioning
effects of the linear operator A. Then an alternating minimization was applied to the augmented Lagrangian
function of (2.2):

Θ(u, v, λ) = θ1(u) + θ2(v)− λ>(Au− v) +
β

2
‖Au− v‖2, (2.3)

resulting the following iterative scheme




uk+1 ← arg minu Θ(u, vk, λk),
vk+1 ← arg minv Θ(uk+1, v, λk),
λk+1 ← λk − β(Auk+1 − vk+1).

(2.4)

Following the pioneer work [13, 12], the ADM was studied extensively in optimization and variational analysis.
In [15], the algorithm is interpreted as the Douglas-Rachford splitting method [6] applied to a dual problem.
The equivalence between the ADM and a proximal point method is shown in [7]. It is also studied in convex
programming [11] and variational inequalities [18, 40, 29]. In the following, we apply the idea of (2.4) to
TV/L2 problem (1.4), or equivalently (1.7).

2.2. Applying the ADM to TV/L2. Let LA(x, y, λ) be the augmented Lagrangian function of (1.7)
which is defined in (1.10). Started at x = xk and λ = λk, the alternating minimization idea of (2.4) applied
to (1.7) yields the following iterative scheme





yk+1 ← arg miny LA(xk, y, λk),
xk+1 ← arg minx LA(x, yk+1, λk),
λk+1 ← λk − β(yk+1 −Dxk+1).

(2.5)

It is easy to show that the minimization of LA(xk, y, λk) with respect to y is equivalent to n2 two-dimensional
problems of the form

min
yi∈R2

‖yi‖+
β

2

∥∥∥∥yi −
(

Dix
k +

1
β

(λk)i

)∥∥∥∥
2

, i = 1, 2, . . . , n2. (2.6)

According to [34, 37], the solution of (2.6) is given explicitly by the two-dimensional shrinkage

yk+1
i = max

{∥∥∥∥Dix
k +

1
β

(λk)i

∥∥∥∥−
1
β

, 0
}

Dix
k + 1

β (λk)i

‖Dixk + 1
β (λk)i‖

, i = 1, 2, . . . , n2, (2.7)

where 0 · (0/0) = 0 is assumed. The computational cost of (2.7) is linear with respect to problem size. We
note that, when the 1-norm is used in the definition of TV, yk+1

i is given by the simpler one-dimensional
shrinkage

yk+1
i = max

{∣∣∣∣Dix
k +

1
β

(λk)i

∣∣∣∣−
1
β

, 0
}
◦ sgn(Dix

k +
1
β

(λk)i), i = 1, 2, . . . , n2,

where “◦” and “sgn” represent, respectively, point-wise product and the signum function, and all operations
are implemented by componentwise. On the other hand, fixing λ = λk and y = yk+1 (recall that y is a
reordering of yi, i = 1, 2, . . . , n2), the minimization of LA with respect to x is a least squares problem and
the corresponding normal equations are

(
D>D +

µ

β
K>K

)
x = D>

(
yk+1 − 1

β
λk

)
+

µ

β
K>f, (2.8)
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where D ,
(
D(1);D(2)

) ∈ R2n2×n2
is the global first-order finite difference operator. We follow the standard

assumption of N (K)
⋂N (D) = 0, where N (·) represents the null space of a matrix, which ensures the

nonsingularity of the coefficient matrix in (2.8). Under the periodic boundary conditions for x, both D>D

and K>K are block circulant matrices with circulant blocks, see e.g., [17, 22], and thus are diagonalizable by
the 2D discrete Fourier transforms. As a result, equations (2.8) can be solved exactly in three steps. First, we
compute the right-hand side vector in equations (2.8) and apply a forward FFT. Second, by componentwisely
dividing the eigenvalues of D>D + µ

β K>K (which needs to be computed only once) we get Fxk+1, where
F represents the two dimensional discrete Fourier transform. Third, we apply the two dimensional inverse
discrete Fourier transform to Fxk+1 to get the new iterate xk+1. At each iteration, the main cost for solving
(2.8) is two FFTs (including one inverse FFT), each at a cost of O(n2 log(n)). Finally, we update λ by

λk+1 = λk − β(yk+1 −Dxk+1). (2.9)

We note that in both the augmented Lagrangian scheme (1.9) and the ADM scheme (2.5), a steplength γ > 0
can be attached to the update of λ, i.e., λ is updated as follows

λk+1 = λk − γβ(yk+1 −Dxk+1). (2.10)

For the convergence of the ALM with such a relaxation parameter, γ ∈ (0, 2) is required. While the permitted
range for convergence is shrank to (0, (

√
5+1)/2) in the ADM scheme (2.5). The shrinkage in the permitted

range of γ from (0, 2) in the ALM to (0, (
√

5+1)/2) in the ADM is related to relaxing the exact minimization
of LA with respect to (x, y) to merely one round of alternating minimization. Under certain reasonable
technical assumptions, convergence of the ADM framework (2.5) with a steplength γ ∈ (0, (

√
5 + 1)/2) was

established in [14, 15] in the context of variational inequality.
Now we are at a position to formally present the ADM approach for grayscale image restoration. We

solve TV/L2 problem (1.4), or equivalently (1.7), by an ADM scheme given below.
Algorithm 1. Input f , K, µ > 0, β > 0 and λ0. Initialize x = f and λ = λ0.

While “not converged”, Do

1) Compute yk+1 according to (2.7) for given (xk, λk).
2) Compute xk+1 via solving (2.8).
3) Update λk+1 via (2.9).

End Do

It is feasible to terminate Algorithm 1 based on optimality conditions of (1.7). For simplicity, we
terminated Algorithm (1) by relative change in x in all of our experiments, i.e.,

‖xk+1 − xk‖
max{‖xk‖, 1} < ε, (2.11)

where ε > 0 is a given tolerance.

2.3. Recent Applications of the ADM. Recently, the ADM has been successfully applied to many
optimization problems that arise from different applications. Based on the splitting technique for TV as used
in (1.7), the ADM has been applied to magnetic resonance image reconstruction from partial frequencies in
[39]. When we started the writing of this paper, we found a newly released preprint [10], which discussed the
connections between FTVd [38], the split Bregman iteration [16], and the ADM. The author proposed using
the ADM to deal with different image processing problems of both primal and dual forms. Also, in [42] the
ADM has been applied to solve eight `1-minimization problems that arise from sparse solution recovery and
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compressive sensing. Lately, the ADM has also been applied to semi-definite programming in [35], matrix
completion in [4], low-rank and sparse matrix decomposition in [41], and least squares covariance matrix
problem in [19].

The versatility of the ADM has demonstrated its efficiency and robustness especially for large-scale
problems which are beyond the size solvable by interior-point methods. The main contribution of this paper
is to apply the ADM to TV-based deconvolution problems, including (1.4), (1.5) and their multichannel
variants, and to provide extensive comparison results to demonstrate its efficiency. We will discuss the
extensions to multichannel image deconvolution in Section 4.

3. Numerical experiments. In this section, we present numerical results to compare ADM 1 with
FTVd v3.0, which implements quadratic penalty method to (1.7) with continuation on β and has been shown
to be highly efficient for solving TV deconvolution problems. For simplicity, in the following FTVd refers to
FTVd v3.0. We designed a set of experiments in terms of different image sizes, blurs and noise. We tested
several images including Cameraman (256×256) and Lena (512×512), both of which have nice mixture of
details, flat regions, shading areas, and textures. All experiments were performed under Windows XP and
MATLAB v7.1 (R14) running on a desktop with an AMD Ultra X4 Processor 2.6GHZ and 1GB of memory.

3.1. Parameter values. As is usually done, we measured the quality of restoration by the signal-to-
noise ratio (SNR), which is measured in decibel (dB) and defined by

SNR(x) , 10 ∗ log10

‖x̄− x̃‖2
‖x̄− x‖2 ,

where x̄ is the original image and x̃ is the mean intensity value of x̄. In our experiments, we used µ =
0.05/std2, where std is the standard deviation of the additive Gaussian noise ω in (1.1). This formula is
based on the observation that µ should be inversely proportional to the variance of noise, while the constant
0.05 was determined empirically so that the restored images had reasonable SNR. For tests on impulsive
noise, we determined µ in (1.5) such that the recovered images have reasonable SNR values.

As stated before, a substantial advantage of the ADM compared with FTVd is that parameter β no
longer needs to go to infinity for the convergence to (1.7). As for γ in (2.10), we note that although it can
vary in (0,

√
5+1
2 ) without hurting convergence of the ADM, this relaxation parameter does not notably affect

convergence speed. Therefore, we simply set γ = 1.618 in all the tests. In order to determine a suitable β

in (1.10), we fixed blurring kernel and additive noise, and tested our codes on a series of β values. In this
experiment, Gaussian kernel was applied with blurring size hsize = 11, standard deviation σ = 10 and noise
level std=10−3. We terminated Algorithm 1 with two different tolerance, i.e., ε = 10−3 and 10−4 in (2.11).
The SNR and CPU time results varying as functions of β are given in Figure 3.1.

It can be seen from Figure 3.1 that, for any fixed β, the results from ε = 10−4 (bottom left) do no
substantially better than those from ε = 10−3 (top left) in the sense of higher SNR. On the other hand,
from the two plots on the right-hand side in Figure 3.1, higher accuracy requires longer CPU time. In
practice, spending much longer time to attain little improvement in recovery quality is more a loss than
gain. Moreover, the observation f is more often than not noisy, and further experiments demonstrated that
the tolerance value should be consistent with the noise level. Therefore, in all experiments we set ε to be
consistent with the noise level, instead of solving TV deconvolution problems to an extremely high accuracy.
It is also clear from Figure 3.1 that the quality of recovered images has little relevance to the value of β. As

1ADM for TV deconvolution is implemented as version 4.0 of the FTVd package which is held at Rice University and

available at http://www.caam.rice.edu/~optimization/L1/ftvd/v4.0/.

http://www.caam.rice.edu/~optimization/L1/ftvd/v4.0/�
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Fig. 3.1. SNR (left) and running time (right) results of ADM corresponding to a set of β values. First row: terminated

by (2.11) with ε = 10−3; Second row: terminated by (2.11) with ε = 10−4;.

a matter of fact, Algorithm 1 converges to (1.4) for any fixed β > 0 in theory. In comparison, the speed of
convergence is more or less related to β. Based on our experimental results, a β value around 10 performs
favorably. Therefore, we set β = 10 in all tests. When comparing ADM with FTVd, we initialized both
algorithms at the blurry and noisy image, and all parameters in FTVd were set to be default.

3.2. Comparison results with FTVd. In this section, we present two classes of results to compare
ADM with FTVd on solving TV/L2 problem (1.4). In the first class of results, we tested two types of
blurring kernels from MATLAB, i.e., Gaussian and average. For each type of kernel, we compared the two
algorithms on a set of kernel sizes. The additive noise used was Gaussian with mean zero and standard
deviation 10−3. This level of noise is substantial in the context of deblurring. ADM was terminated using
(2.11) with ε = 10−3 and FTVd was stopped with default setting. Detailed information on the setup of
different tests is summarized in Table 3.2. The SNR and CPU time results are given in Figure 3.2.

Table 3.1

Information on setup for four tests.

Test No. Image Size Blurring type Blurring kernel parameters

1 Cameraman 256× 256 Gaussian hsize = {3, 5, . . . , 15}, σ = 10

2 Lena 512× 512 Gaussian hsize = {3, 5, . . . , 15}, σ = 10

3 Cameraman 256× 256 Average hsize = {3, 5, . . . , 15}
4 Lena 512× 512 Average hsize = {3, 5, . . . , 15}

It can be seen from Figure 3.2 that both algorithms consumed only a few seconds to recover an image
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Fig. 3.2. SNR and running time results on tests No. 1, 2, 3 and 4.

of size as large as 512 × 512. The increase in CPU time for both algorithms when the underlying image
becomes larger is acceptable, which is because the main computation of both methods is several FFTs. Since
both algorithms solve (1.4), the resulting SNR values from FTVd and ADM are approximately identical for
each hsize. However, ADM is faster than FTVd, which is mainly because the augmented Lagrangian based
alternating minimization is far better than the penalty method with continuation as implemented in FTVd.
We note that the the faster convergence of ADM compared to FTVd becomes more obvious for TV/L1

problems and larger sized images, see comparison results presented in Figures 4.2, 4.3 and 4.4.

In the second class of results, we compared ADM with FTVd under different level of Gaussian noise.
In this experiment, we blurred the Lena image with the average blur of hsize = 13. We ran both algo-
rithms twice corresponding to two levels of Gaussian noise with mean zero and different standard deviations.
Specifically, we tested std = 10−2 and 10−3, and ADM was terminated by (2.11) with ε = 10−2 and 10−3,
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B&N, SNR: 8.67dB FTVd, SNR: 12.57dB, CPU:  4.8s, It.: 12 ADM, SNR: 12.74dB, CPU:  1.5s, It.: 5

B&N, SNR: 8.75dB FTVd, SNR: 17.28dB, CPU:  8.5s, It.: 25 ADM, SNR: 17.16dB, CPU:  3.7s, It.: 14

Fig. 3.3. Recovered results from FTVd and ADM. In both rows from left to right: blurry and noisy image (B&N), results

recovered by FTVd and ADM, respectively. CPU and It. represent running time and iteration numbers, respectively. Top row:

std=10−2; Bottom row: std=10−3.
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Fig. 3.4. SNR (left) and function values (right) results of FTVd and ADM. In all plots, x-axes represent iteration

numbers. Top row: std=10−2; Bottom row: std=10−3.
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respectively. FTVd was stopped with default setting. The blurry and noisy images (B&N) and the restored
ones are presented in Figure 3.3. The changing of SNR and objective values as functions of iteration numbers
are also presented in Figure 3.4.

It can been seen from Figure 3.3 that ADM obtained images of comparable quality as those from FTVd
in much less CPU time. As mentioned before, the per-iteration computation of both ADM and FTVd for
grayscale image deconvolution is mainly two FFTs, each at a cost of O(n2 log(n)). Therefore, the running
time consumed by the two algorithms is proportional to the iteration numbers. From Figure 3.4 ADM is
able to reach a reasonable SNR in merely several iterations and decrease the objective function rapidly.
To reach a solution of similar quality, FTVd generally takes more iterations. For example, for std=10−2,
the highest SNR value 12.74dB is reached by ADM in 5 iterations, while the result of FTVd is not better
after 12 iteration, see the top left plot in Figure 3.4. Similarly, for std=10−3 (bottom plots in Figure 3.4),
the highest SNR value 17.33dB is reached in merely 5 iterations, while FTVd took at least 19 iterations
to obtain a comparable value. Since FTVd implements the classical penalty method with continuation on
β, these results validate that the TV/L2 model (1.4) is not well approximated when β is not sufficiently
large. In pure optimization point of view, ADM reached smaller function values than FTVd throughout the
whole iteration process, see plots on the right-hand side of Figure 3.4 (the objective and SNR values at the
initial point were omitted so that the function values belong to a small dynamic range). We note that, for
std=10−3, the SNR value started to decrease a little bit after ADM obtained the highest value 17.23dB,
which is because, in the presence of noise, the true solution of (1.4) does not necessarily have higher SNR
than mediate iterates, which can be validated by examining the function values from ADM (plot on bottom
right of Figure 3.4) because they kept decreasing.

From the above comparison results, it is safe to conclude that ADM is more efficient than FTVd when
applied to (1.4). In the presence of noise, as is always the case in practical applications, the solution of (1.4)
is merely an approximation to the true image. Therefore, solving (1.4) to an extremely high accuracy is
not always beneficial and thus is not necessarily. In real-time imaging applications where speed is crucial, a
numerical algorithm which converges fast at the beginning iterations, like ADM, is highly useful.

4. Extensions. In this section, we extend the ADM approach to solve the multichannel variants of
(1.4) and (1.5). The derivation of algorithms is similar to that of Algorithm 1. We also present experimental
results and compare with FTVd to show the efficiency of ADM.

4.1. Extension to multichannel variant of TV/L2. Suppose x̄ = [x̄(1); . . . ; x̄(m)] ∈ Rmn2
is an

m-channel image of size n× n, where x̄(j) represents the jth channel, j = 1, . . . , m, and its blurry and noisy
observation f = [f (1); . . . ; f (m)] ∈ Rmn2

is given by (1.1) in which case K = [Kk,l]mk,l=1 ∈ Rmn2×mn2
is a

cross-channel blurring operator. We recover x̄ via solving the following local weighted TV/L2-like problem

min
x

∑
i
‖(Im ⊗Di)x‖+

µ

2
‖Kx− f‖2, (4.1)

where Im is the identity matrix of order m, “⊗” represents the Kronecker product, and Im ⊗Di is a local
finite difference operator at pixel i. For more details on this multichannel TV deconvolution model, see e.g.,
[37]. In the following, we show that ADM can be applied to solve (4.1).

For simplicity, we let Gi = Im⊗Di, i = 1, . . . , n2. Simple manipulation shows that (4.1) is equivalent to

min
y,x

{∑
i
‖yi‖+

µ

2
‖Kx− f‖2 : yi = Gix, i = 1, . . . , n2

}
. (4.2)

For j = 1, . . . , 2m, let G(j) ∈ Rn2×mn2
be the matrix formed by staking the jth rows of G1, G2, . . . , Gn2 .



12 M. Tao and J. Yang

Denote

G ,




G(1)

...
G(2m)


 ∈ R2mn2×mn2

and Y ,




y>1
...

y>n2


 , [y1, y2, . . . , y2m] ∈ Rn2×2m. (4.3)

Furthermore, we let y = [y1; . . . ; y2m]. Given this notation, the ADM applied to (4.2) can be sketched as
follows. First, we form the augmented Lagrangian function LA(x, y, λ) of (4.1), where λ = [λ1, λ2, . . . , λ2m] ∈
R2mn2

is the Lagrangian multiplier. Then we apply alternating minimization to LA(x, y, λ) with respect to
x and y and immediate updates of multipliers. Started at (xk, λk), the ADM applied to (4.1) obtains
(xk+1, λk+1) in three steps given below.

1. Compute yk+1 via

yk+1
i = max

{
‖Gix

k + λk
i /β‖ − 1

β
, 0

}
Gix

k + λk
i /β

‖Gixk + λk
i /β‖ , i = 1, . . . , n2. (4.4)

2. Compute xk+1 via solving
(

G>G +
µ

β
K>K

)
x = G>(yk+1 − λk/β) +

µ

β
K>f. (4.5)

3. Update λ via

λk+1 = λk − γβ(yk+1 −Gxk+1). (4.6)

Recall that D = (D(1), D(2)) is the global finite difference operator. For images in the standard RGB (red,
green and blue) color system, i.e., x = [xr;xg;xb] ∈ R3n2

, equations (4.5) reduce to
(

I3 ⊗ (D>D) +
µ

β
K>K

)
x = (I3 ⊗D)>(yk+1 − λk/β) +

µ

β
K>f. (4.7)

Under the periodic boundary conditions for x, the coefficient matrix in (4.7) has a block circulant structures
and can be solved by 6 FFTs (including 3 inverse FFTs) and a block-wise Gaussian elimination. For
implementation details on (4.4)-(4.6), see [37] for similar discussions.

To compare the ADM framework (4.4)-(4.6) with FTVd for multichannel image restoration, we ran two
tests with within- and cross- channel blurs, respectively. Let the cross-channel kernel H be of the form

H =




H11 H12 H13

H21 H22 H23

H31 H32 H33




where Hii, i = 1, 2, 3, are within channel kernels and Hij , i 6= j, are cross-channel kernels. For simplicity, let
the motion blur with a motion length len and an angle theta in the counterclockwise direction be denoted
by M(len, theta). Similarly, the Gaussian blur with a square support size hsize and a standard deviation
sigma is denoted by G(hsize, sigma), and the average blur with a square support size hsize by A(hsize).
In our experiments, we generated cross-channel blurring kernels in the same manner as in [37] which is
described below.

1. Generate 9 kernels:

{M(11, 45),M(21, 90),M(41, 135),G(7, 5),G(9, 5),G(11, 5),A(13),A(15),A(17)} ;
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2. Randomly assign the above 9 kernels to {H11,H12,H13,H21,H22,H23,H31,H32,H33};
3. Multiply each Hij with wij , where W ∈ R3×3 and wij is the (i, j)th element of W .

In the first test, we used within-channel blurring, i.e., setting W to be the identity matrix of order 3. In the
second test, we tested cross-channel kernels with

W =




0.7 0.15 0.15
0.1 0.8 0.1
0.2 0.2 0.6


 .

In both tests, we added Gaussian noise with zero mean and standard deviation std=10−3. All parameters
were set to be identical to those described in Section 3, except we terminated ADM by (2.11) with ε = 5×10−3.
The blurry and noisy images and recovered ones by both methods are presented in Figure 4.1. Similar to
the results for grayscale images, ADM generally consumed less CPU time than FTVd to obtain an image
of comparable quality. We also studied the convergence behavior of SNR and objective function values as
functions of iteration numbers. The results are generally similar to those presented in Figure 3.4 and thus
are omitted.

B&N, SNR: 8.18dB FTVd, SNR: 19.18dB, CPU: 14.0s, It.: 12 ADM, SNR: 19.38dB,  CPU:  7.1s, It.: 5

B&N, SNR: 6.47dB FTVd, SNR: 18.72dB, CPU: 16.6s, It.: 12 ADM, SNR: 18.95dB, CPU:  8.8s, It.: 5

Fig. 4.1. RGB image results from FTVd and ADM. In both rows from left to right: blurry and noisy image (B&N),

results recovered by FTVd and ADM, respectively. Top row: results recovered from within channel blurring; Bottom row:

results recovered from cross-channel blurring.

4.2. Extensions to TV/L1 and its multichannel variant. In this section, we further extend the
ADM approach to solve (1.5) and its multichannel variant, which are suitable for impulsive noise removal.
We merely treat the single-channel case and the treatment of multichannel variant is completely analogous.
Similar as previous discussions, by introducing variables (1.5) is equivalently transformed to

min
x,y,z

{∑
i
‖yi‖+ µ‖z‖1 : yi = Dix, i = 1, . . . , n2, z = Kx− f

}
. (4.8)
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The augmented Lagrangian function of (4.8) is

LA(x, y, z, λ) =
∑

i
‖yi‖ − λ>1 (y −Dx) +

β1

2

∑
i
‖yi −Dix‖2

+ µ‖z‖1 − λ>2 [z − (Kx− f)] +
β2

2
‖z − (Kx− f)‖2, (4.9)

where β1, β2 > 0, and λ = (λ1, λ2) ∈ R3n2
is the Lagrangian multiplier. According to the scheme of ADM,

for given (xk, λk), the next iterate (xk+1, yk+1, zk+1, λk+1) is generated as follows.

1. Fixing x = xk and λ = λk and minimizing LA with respect to y and z to obtain yk+1 and zk+1.
The minimizers are given explicitly by

yk+1
i = max

{∥∥∥∥Dix
k +

(λ1)k
i

β1

∥∥∥∥−
1
β1

, 0
}

Dix
k + (λ1)k

i /β1

‖Dixk + (λ1)k
i /β1‖

, i = 1, 2, . . . , n2, (4.10)

zk+1 = sgn(Kxk − f + (λ2)k/β2) ◦max{|Kxk − f + (λ2)k/β2| − µ/β2, 0}, (4.11)

where | · | and sgn represent componentwise absolute value and signum function, respectively.
2. Compute xk+1 via soling the normal equations

(
D>D +

β2

β1
K>K

)
x = D>

(
yk+1 − (λ1)k

β1

)
+ K>

(
β2z

k+1 − (λ2)k

β1

)
+

β2

β1
K>f. (4.12)

3. Update λ via

(λ1)k+1 = (λ1)k − γβ1(yk+1 −Dxk+1), (4.13)

(λ2)k+1 = (λ2)k − γβ2[zk+1 − (Kxk+1 − f)]. (4.14)

Now we present experimental results to compare ADM with FTVd on solving TV/L1 problems. In
addition to the grayscale image cameraman, we also tested a RGB image Rose (303×250). In our experiments,
we first generated a blurry image and then corrupted 60% of its pixels by salt-and-pepper noise. In our
experiments, we simply set β1 = 5 and β2 = 20, which may not be optimal but perform quite well in our
experiments. For 60% impulsive noise corruption, we set µ = 4 in (1.5) as suggested in [34]. We terminated
ADM by (2.11) with ε = 10−3. The blurring kernels and detailed recovery results are given in Figures 4.2 and
4.3. For the experiment on Rose image, we also recorded the SNR and objective values to better compare
the performance of FTVd and ADM. The changing behavior of function values and SNR with respect to
iteration numbers is presented in Figure 4.4.

It can been seen from Figures 4.2 and 4.3 that, to obtain comparable or equally good images, ADM
consumes much less iterations than FTVd and thus is much faster. Compared with FTVd, the faster
convergence of ADM becomes even more obvious on TV/L1 than on TV/L2 problems. From Figure 4.2,
ADM took only 2.6 seconds to recover the cameraman image, while FTVd consumed 21.9 seconds to obtain
an equally good image. For color image, the efficiency of ADM becomes more obvious, see the test results on
Rose image given in Figure 4.3, which is because FTVd needs one more penalty term for TV/L1 problems,
while ADM converges for small values of β’s and does not need continuation. From Figure 4.4, it can be
seen that jumps appear in the SNR and function value curves of FTVd, which is due to the switching of
subproblems (β1 and β2 increase in a continual scheme), while the results of ADM changes smoothly.
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Corruption:   60% SNR 10.7dB, CPU 21.9s, It. 178 SNR 10.7dB, CPU  2.6s, It. 36

Fig. 4.2. Grayscale image results of FTVd and ADM on TV/L1. Left: blurry and noisy image (blurred by average kernel

with hsize=9 and corrupted by 60% salt-and-pepper noise); Middle: recovered by FTVd; Right: recovered by ADM.

Corruption:   60% SNR 13.5dB, CPU  126s, It. 215 SNR 13.4dB, CPU   18s, It. 35

Fig. 4.3. RGB image results of FTVd and ADM on TV/L1 problem. Left: blurry and noisy image (blurred by the same

cross-channel kernel as used in Section 4.1 and corrupted by 60% salt-and-pepper noise); Middle: recovered by FTVd; Right:

recovered by ADM.

5. Concluding remarks. Based on the classical augmented Lagrangian function and an alternating
minimization framework, we propose the use of alternating direction method for recovering images from
blurry and noisy observations. The ADM approach is applicable to TV/L2, TV/L1 and their multichannel
extensions. Extensive comparison results on single- and multi-channel images with different types of blurs
and noise indicate that ADM is stable, efficient and in particular faster than a state-of-the-art algorithm
FTVd [38]. And its excellent performance depends on fewer fine tuning of parameters than FTVd. The
same as FTVd, ADM also takes advantage of the convolution structure. The per-iteration cost of ADM is
dominated by shrinkage operations and FFTs. For TV/L1 problems, the faster convergence of ADM becomes
more obvious, which is mainly due to the advantage of iterative updates of multipliers instead of increasing
penalty parameters to a large value.
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